Freire Eleonora, Oddo Cristian, Frappier Lori, de Prat-Gay Gonzalo
Instituto Leloir, Patricias Argentinas 435, (1405) Buenos Aires, Argentina.
Proteins. 2008 Feb 1;70(2):450-61. doi: 10.1002/prot.21580.
The Epstein-Barr nuclear antigen 1 (EBNA1) is essential for DNA replication and episome segregation of the viral genome, and participates in other gene regulatory processes of the Epstein-Barr virus in benign and malignant diseases related to this virus. Despite the participation of other regions of the protein in evading immune response, its DNA binding, dimeric beta-barrel domain (residues 452-641) is necessary and sufficient for the main functions. This domain has an unusual topology only shared by another viral origin binding protein (OBP), the E2 DNA binding domain of papillomaviruses. Both the amino acid and DNA target sequences are completely different for these two proteins, indicating a link between fold conservation and function. In this work we investigated the folding and stability of the DNA binding domain of EBNA1 OBP and found it is extremely resistant to chemical, temperature, and pH denaturation. The thiocyanate salt of guanidine is required for obtaining a complete transition to a monomeric unfolded state. The unfolding reaction is extremely slow and shows a marked uncoupling between tertiary and secondary structure, indicating the presence of intermediate species. The Gdm.SCN unfolded protein refolds to fully soluble and spherical oligomeric species of 1.2 MDa molecular weight, with identical fluorescence centre of spectral mass but different intensity and different secondary structure. The refolded spherical oligomers are substantially less stable than the native recombinant dimer. In keeping with the substantial structural rearrangement in the oligomers, the spherical oligomers do not bind DNA, indicating that the DNA binding site is either disrupted or participates in the oligomerization interface. The puzzling extreme stability of a dimeric DNA binding domain from a protein from a human infecting virus in addition to a remarkable kinetically driven folding where all molecules do not return to the most stable original species suggests a co-translational and directional folding of EBNA1 in vivo, possibly assisted by folding accessory proteins. Finally, the oligomers bind Congo red and thioflavin-T, both characteristic of repetitive beta-sheet elements of structure found in amyloids and their soluble precursors. The stable nature of the "kinetically trapped" oligomers suggest their value as models for understanding amyloid intermediates, their toxic nature, and the progress to amyloid fibers in misfolding diseases. The possible role of the EBNA1 spherical oligomers in the virus biology is discussed.
爱泼斯坦-巴尔核抗原1(EBNA1)对于病毒基因组的DNA复制和附加体分离至关重要,并参与了爱泼斯坦-巴尔病毒在与此病毒相关的良性和恶性疾病中的其他基因调控过程。尽管该蛋白的其他区域参与了逃避免疫反应,但其DNA结合二聚体β桶结构域(第452 - 641位氨基酸残基)对于其主要功能而言是必要且充分的。这个结构域具有一种不寻常的拓扑结构,仅与另一种病毒起始结合蛋白(OBP)——乳头瘤病毒的E2 DNA结合结构域——相同。这两种蛋白质的氨基酸序列和DNA靶序列完全不同,这表明折叠保守性与功能之间存在联系。在这项工作中,我们研究了EBNA1 OBP的DNA结合结构域的折叠和稳定性,发现它对化学、温度和pH变性具有极强的抗性。需要胍的硫氰酸盐才能使它完全转变为单体解折叠状态。解折叠反应极其缓慢,并且在三级结构和二级结构之间表现出明显的解偶联,这表明存在中间物种。Gdm.SCN使蛋白质解折叠后会重新折叠成分子量为1.2 MDa的完全可溶且呈球形的寡聚体,其光谱质量的荧光中心相同,但强度和二级结构不同。重新折叠后的球形寡聚体的稳定性明显低于天然重组二聚体。与寡聚体中大量的结构重排一致,球形寡聚体不结合DNA,这表明DNA结合位点要么被破坏,要么参与了寡聚化界面。来自一种人类感染病毒的蛋白质的二聚体DNA结合结构域具有令人费解的极端稳定性,此外还有显著的动力学驱动折叠,即并非所有分子都能回到最稳定的原始物种,这表明EBNA1在体内可能是共翻译且定向折叠的,可能有折叠辅助蛋白的协助。最后,这些寡聚体结合刚果红和硫黄素-T,这两者都是淀粉样蛋白及其可溶性前体中发现的重复β折叠结构元件的特征。“动力学捕获”的寡聚体的稳定性质表明它们作为理解淀粉样蛋白中间体、其毒性性质以及错误折叠疾病中向淀粉样纤维进展的模型具有价值。我们还讨论了EBNA1球形寡聚体在病毒生物学中的可能作用。