Barra Anne-Laure, Caneschi Andrea, Cornia Andrea, Gatteschi Dante, Gorini Lapo, Heiniger Leo-Philipp, Sessoli Roberta, Sorace Lorenzo
Grenoble High Magnetic Field Laboratory-CNRS, 38042 Grenoble, France.
J Am Chem Soc. 2007 Sep 5;129(35):10754-62. doi: 10.1021/ja0717921. Epub 2007 Aug 9.
Single-crystal high-frequency electron paramagnetic resonance spectroscopy has been employed on a truly axial single molecule magnet of formula [Mn(12)O(12)(tBu-CH(2)CO(2))16(CH(3)OH)4].CH(3)OH to investigate the origin of the transverse magnetic anisotropy, a crucial parameter that rules the quantum tunneling of the magnetization. The crystal structure, including the absolute structure of the crystal used for EPR experiments, has been fully determined and found to belong to I4 tetragonal space group. The angular dependence of the resonance fields in the crystallographic ab plane shows the presence of high-order tetragonal anisotropy and strong dependence on the MS sublevels with the second-highest-field transition being angular independent. This was rationalized including competing fourth- and sixth-order transverse parameters in a giant spin Hamiltonian which describes the magnetic anisotropy in the ground S = 10 spin state of the cluster. To establish the origin of these anisotropy terms, the experimental results have been further analyzed using a simplified multispin Hamiltonian which takes into account the exchange interactions and the single ion magnetic anisotropy of the Mn(III) centers. It has been possible to establish magnetostructural correlations with spin Hamiltonian parameters up to the sixth order. Transverse anisotropy in axial single molecule magnets was found to originate from the multispin nature of the system and from the breakdown of the strong exchange approximation. The tilting of the single-ion easy axes of magnetization with respect to the 4-fold molecular axis of the cluster plays the major role in determining the transverse anisotropy. Counterintuitively, the projections of the single ion easy axes on the ab plane correspond to hard axes of magnetization.
单晶高频电子顺磁共振光谱已被应用于分子式为[Mn(12)O(12)(tBu-CH(2)CO(2))16(CH(3)OH)4].CH(3)OH的真正轴向单分子磁体,以研究横向磁各向异性的起源,横向磁各向异性是控制磁化量子隧穿的关键参数。已完全确定了晶体结构,包括用于电子顺磁共振实验的晶体的绝对结构,发现其属于I4四方空间群。晶体学ab平面中共振场的角度依赖性表明存在高阶四方各向异性,并且强烈依赖于MS子能级,第二高场跃迁与角度无关。这可以通过在描述簇的基态S = 10自旋态中的磁各向异性的巨自旋哈密顿量中包含竞争的四阶和六阶横向参数来合理解释。为了确定这些各向异性项的起源,使用简化的多自旋哈密顿量进一步分析了实验结果,该哈密顿量考虑了Mn(III)中心的交换相互作用和单离子磁各向异性。已经能够建立高达六阶的自旋哈密顿量参数的磁结构相关性。发现轴向单分子磁体中的横向各向异性源于系统的多自旋性质和强交换近似的失效。单离子易磁化轴相对于簇的四重分子轴的倾斜在确定横向各向异性中起主要作用。与直觉相反,单离子易磁化轴在ab平面上的投影对应于难磁化轴。