Department of Chemistry 'Ugo Schiff' and INSTM Research Unit, University of Florence, 50019 Sesto Fiorentino, Italy.
Nature. 2010 Nov 18;468(7322):417-21. doi: 10.1038/nature09478. Epub 2010 Oct 27.
A fundamental step towards atomic- or molecular-scale spintronic devices has recently been made by demonstrating that the spin of an individual atom deposited on a surface, or of a small paramagnetic molecule embedded in a nanojunction, can be externally controlled. An appealing next step is the extension of such a capability to the field of information storage, by taking advantage of the magnetic bistability and rich quantum behaviour of single-molecule magnets (SMMs). Recently, a proof of concept that the magnetic memory effect is retained when SMMs are chemically anchored to a metallic surface was provided. However, control of the nanoscale organization of these complex systems is required for SMMs to be integrated into molecular spintronic devices. Here we show that a preferential orientation of Fe(4) complexes on a gold surface can be achieved by chemical tailoring. As a result, the most striking quantum feature of SMMs-their stepped hysteresis loop, which results from resonant quantum tunnelling of the magnetization-can be clearly detected using synchrotron-based spectroscopic techniques. With the aid of multiple theoretical approaches, we relate the angular dependence of the quantum tunnelling resonances to the adsorption geometry, and demonstrate that molecules predominantly lie with their easy axes close to the surface normal. Our findings prove that the quantum spin dynamics can be observed in SMMs chemically grafted to surfaces, and offer a tool to reveal the organization of matter at the nanoscale.
最近,通过证明可以外部控制沉积在表面上的单个原子或嵌入纳米结中的小顺磁分子的自旋,朝着原子或分子尺度的自旋电子器件迈出了重要的一步。接下来吸引人的一步是利用单分子磁体(SMM)的磁双稳性和丰富的量子行为,将这种能力扩展到信息存储领域。最近,已经提供了一个概念验证,即当 SMM 化学固定在金属表面上时,保留了磁记忆效应。然而,为了将 SMM 集成到分子自旋电子器件中,需要控制这些复杂系统的纳米级组织。在这里,我们表明可以通过化学修饰实现 Fe(4) 配合物在金表面上的优先取向。结果,使用基于同步加速器的光谱技术可以清楚地检测到 SMM 最显著的量子特征 - 其阶梯式磁滞回线,这是由于磁化的共振量子隧穿引起的。借助多种理论方法,我们将量子隧穿共振的角度依赖性与吸附几何形状联系起来,并证明分子主要以其易轴靠近表面法线的方式存在。我们的发现证明了可以在化学接枝到表面的 SMM 中观察到量子自旋动力学,并提供了一种揭示纳米尺度物质组织的工具。