Langenbucher Achim, Seitz Berthold, Szentmáry Nóra
Department of Medical Physics, Friedrich-Alexander-University Erlangen-Nürnberg, Henkestrasse 91, D-91052 Erlangen, Germany.
Vision Res. 2007 Aug;47(18):2411-7. doi: 10.1016/j.visres.2007.05.015. Epub 2007 Aug 7.
Especially after corneal surgery the lateral magnification of the eye providing the retinal image size of an object is a crucial factor influencing visual acuity and binocularity. The purpose of this study is to describe a paraxial computing scheme calculating lateral magnification changes (ratio of the image sizes before and after surgery) due to variation in corneal shape and spectacle refraction.
From the 4 x 4 refraction and translation matrices the system matrix representing the entire 'optical system eye' and the pupil matrix describing the sub-system from the spectacle correction to the aperture stop were defined for the state before and after surgery. As the chief ray is assumed to pass through the centre of the aperture stop, the 2 x 2 matrix of the lateral magnification ratio from preoperative to postoperative is described by the 2 x 2 sub-matrices of the respective pupil matrices. The cardinal meridians can be extracted by calculating the eigenvalues and eigenvectors.
Vertex distance 14 mm, measured distance between corneal apex and aperture stop 3.6mm, keratometry 39 D+6D/0 degrees to 47D+3D/30 degrees and refraction 3.5D-5-5D/5 degrees to -4.0 D-3.5D/25 degrees preoperatively to postoperatively. The matrix of magnification ratio from preop to postop yields (0.8960 -0.0085;0.0074 0.9371) and the eigenvalues decomposition provided a 10.7% minified image at 170.1 degrees and a minified image of 6.1% at 78.7 degrees , which both are clinically relevant.
We presented a straight-forward computer-based strategy for calculation of retinal image size changes using 4 x 4 matrix notation. With this model the meridional changes in lateral magnification from the preoperative to the postoperative stage or between follow-up stages can be estimated from keratometry, refraction, vertex distance and anterior chamber depth, which might be important for binocularity and vision tests in corneal surgery.
尤其是在角膜手术后,提供物体视网膜图像大小的眼睛横向放大率是影响视力和双眼视觉的关键因素。本研究的目的是描述一种近轴计算方案,用于计算由于角膜形状和眼镜屈光变化引起的横向放大率变化(手术前后图像大小的比率)。
从4×4屈光和平移矩阵中,为手术前后的状态定义了表示整个“光学系统眼睛”的系统矩阵和描述从眼镜矫正到孔径光阑子系统的光瞳矩阵。由于假定主光线通过孔径光阑的中心,术前到术后横向放大率的2×2矩阵由相应光瞳矩阵的2×2子矩阵描述。通过计算特征值和特征向量可以提取主要子午线。
顶点距离14毫米,测量的角膜顶点与孔径光阑之间的距离为3.6毫米,术前角膜曲率计读数为39D + 6D / 0度至47D + 3D / 30度,屈光度为3.5D - 5 - 5D / 5度至 - 4.0D - 3.5D / 25度,术后为上述相应变化。术前到术后放大率比率矩阵得出(0.8960 -0.0085;0.0074 0.9371),特征值分解在170.1度处提供了10.7%的缩小图像,在78.7度处提供了6.1%的缩小图像,这两者在临床上都具有相关性。
我们提出了一种基于计算机的简单策略,使用4×4矩阵符号来计算视网膜图像大小变化。通过该模型,可以根据角膜曲率计、屈光度、顶点距离和前房深度估计术前到术后阶段或随访阶段之间横向放大率的子午线变化,这对于角膜手术中的双眼视觉和视力测试可能很重要。