Suppr超能文献

脑电图时间序列的非线性和线性预测

Non-linear and linear forecasting of the EEG time series.

作者信息

Blinowska K J, Malinowski M

机构信息

Laboratory of Medical Physics, Warsaw University, Poland.

出版信息

Biol Cybern. 1991;66(2):159-65. doi: 10.1007/BF00243291.

Abstract

The method of non-linear forecasting of time series was applied to different simulated signals and EEG in order to check its ability of distinguishing chaotic from noisy time series. The goodness of prediction was estimated, in terms of the correlation coefficient between forecasted and real time series, for non-linear and autoregressive (AR) methods. For the EEG signal both methods gave similar results. It seems that the EEG signal, in spite of its chaotic character, is well described by the AR model.

摘要

为检验非线性时间序列预测方法区分混沌时间序列和噪声时间序列的能力,将该方法应用于不同的模拟信号和脑电图(EEG)。针对非线性方法和自回归(AR)方法,根据预测时间序列与实际时间序列之间的相关系数评估预测的优度。对于脑电图信号,两种方法得到了相似的结果。尽管脑电图信号具有混沌特性,但自回归模型似乎能很好地描述它。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验