Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA.
IEEE Trans Biomed Eng. 2013 Mar;60(3):753-62. doi: 10.1109/TBME.2011.2109715. Epub 2011 Jan 31.
Neural oscillations are important features in a working central nervous system, facilitating efficient communication across large networks of neurons. They are implicated in a diverse range of processes such as synchronization and synaptic plasticity, and can be seen in a variety of cognitive processes. For example, hippocampal theta oscillations are thought to be a crucial component of memory encoding and retrieval. To better study the role of these oscillations in various cognitive processes, and to be able to build clinical applications around them, accurate and precise estimations of the instantaneous frequency and phase are required. Here, we present methodology based on autoregressive modeling to accomplish this in real time. This allows the targeting of stimulation to a specific phase of a detected oscillation. We first assess performance of the algorithm on two signals where the exact phase and frequency are known. Then, using intracranial EEG recorded from two patients performing a Sternberg memory task, we characterize our algorithm's phase-locking performance on physiologic theta oscillations: optimizing algorithm parameters on the first patient using a genetic algorithm, we carried out cross-validation procedures on subsequent trials and electrodes within the same patient, as well as on data recorded from the second patient.
神经振荡是工作中的中枢神经系统的重要特征,有助于神经元之间的高效通信。它们与各种过程有关,如同步和突触可塑性,并且可以在各种认知过程中看到。例如,海马theta 振荡被认为是记忆编码和检索的关键组成部分。为了更好地研究这些振荡在各种认知过程中的作用,并能够围绕它们构建临床应用,需要对瞬时频率和相位进行准确和精确的估计。在这里,我们提出了基于自回归建模的方法来实时实现这一点。这允许将刺激靶向到检测到的振荡的特定相位。我们首先评估了该算法在两个信号上的性能,其中精确的相位和频率是已知的。然后,使用两名患者在进行 Sternberg 记忆任务时记录的颅内 EEG,我们对我们的算法在生理 theta 振荡上的锁相性能进行了特征描述:使用遗传算法在第一个患者上优化算法参数,我们在同一患者内的后续试验和电极以及从第二个患者记录的数据上进行了交叉验证程序。