Suppr超能文献

Entropy-based joint analysis for two-stage genome-wide association studies.

作者信息

Kang Guolian, Zuo Yijun

机构信息

Department of Statistics and Probability, Michigan State University, East Lansing, MI, 48824, USA.

出版信息

J Hum Genet. 2007;52(9):747-756. doi: 10.1007/s10038-007-0177-7. Epub 2007 Aug 9.

Abstract

Genome-wide association studies (GWAS) are being conducted to identify common genetic variants that predispose to human diseases to unravel the genetic etiology of complex human diseases now. Because of genotyping cost constraints, it often follows a two-stage design, in which a large number of markers are identified in a proportion of the available samples in stage 1, and then the markers identified in stage 1 are examined in all the samples in stage 2. In this paper, we introduce a nonlinear entropy-based statistic for joint analysis for two-stage genome-wide association studies. Type I error rates and power of the entropy-based statistic for association tests are validated using simulation studies in single-locus test. The power of entropy-based joint analysis is investigated by simulations. And the results suggest that entropy-based joint analysis is always more powerful than linear joint analysis that uses a linear function of risk allele frequencies in cases and controls when detecting rare genetic variants; the powers of these two joint analyses are comparable when detecting common genetic variants. Furthermore, when the false discovery rate is controlled, entropy-based joint analysis is more powerful and needs fewer samples than linear joint analysis that uses a linear function of risk allele frequencies in cases and controls. So, we recommend we should use entropy-based strategy for two-stage genome-wide association studies to detect the rare and common genetic variants with moderate to large genetic effect underlying a complex disease.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验