Suppr超能文献

基于基因的全基因组关联分析:一项比较研究。

Gene-based Genomewide Association Analysis: A Comparison Study.

机构信息

Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN 38105;

出版信息

Curr Genomics. 2013 Jun;14(4):250-5. doi: 10.2174/13892029113149990001.

Abstract

The study of gene-based genetic associations has gained conceptual popularity recently. Biologic insight into the etiology of a complex disease can be gained by focusing on genes as testing units. Several gene-based methods (e.g., minimum p-value (or maximum test statistic) or entropy-based method) have been developed and have more power than a single nucleotide polymorphism (SNP)-based analysis. The objective of this study is to compare the performance of the entropy-based method with the minimum p-value and single SNP-based analysis and to explore their strengths and weaknesses. Simulation studies show that: 1) all three methods can reasonably control the false-positive rate; 2) the minimum p-value method outperforms the entropy-based and the single SNP-based method when only one disease-related SNP occurs within the gene; 3) the entropy-based method outperforms the other methods when there are more than two disease-related SNPs in the gene; and 4) the entropy-based method is computationally more efficient than the minimum p-value method. Application to a real data set shows that more significant genes were identified by the entropy-based method than by the other two methods.

摘要

近年来,基于基因的遗传关联研究在概念上越来越受欢迎。通过将基因作为检测单位,我们可以深入了解复杂疾病的病因。已经开发出了几种基于基因的方法(例如,最小 p 值(或最大检验统计量)或基于熵的方法),并且它们比基于单核苷酸多态性(SNP)的分析具有更高的功效。本研究的目的是比较基于熵的方法与最小 p 值和单 SNP 分析的性能,并探索它们的优缺点。模拟研究表明:1)所有三种方法都可以合理地控制假阳性率;2)当基因内仅发生一个与疾病相关的 SNP 时,最小 p 值方法优于基于熵的方法和基于单 SNP 的方法;3)当基因中有两个以上与疾病相关的 SNP 时,基于熵的方法优于其他方法;4)与最小 p 值方法相比,基于熵的方法在计算上更加高效。应用于真实数据集的结果表明,基于熵的方法比其他两种方法鉴定出了更多显著的基因。

相似文献

1
Gene-based Genomewide Association Analysis: A Comparison Study.
Curr Genomics. 2013 Jun;14(4):250-5. doi: 10.2174/13892029113149990001.
2
Gene-centric genomewide association study via entropy.
Genetics. 2008 May;179(1):637-50. doi: 10.1534/genetics.107.082370. Epub 2008 May 5.
3
An entropy test for single-locus genetic association analysis.
BMC Genet. 2010 Mar 23;11:19. doi: 10.1186/1471-2156-11-19.
4
An entropy-based statistic for genomewide association studies.
Am J Hum Genet. 2005 Jul;77(1):27-40. doi: 10.1086/431243. Epub 2005 May 9.
5
A modified entropy-based approach for identifying gene-gene interactions in case-control study.
PLoS One. 2013 Jul 18;8(7):e69321. doi: 10.1371/journal.pone.0069321. Print 2013.
6
Genome-wide tagging SNPs with entropy-based Monte Carlo method.
J Comput Biol. 2006 Nov;13(9):1606-14. doi: 10.1089/cmb.2006.13.1606.
7
Boosting signals in gene-based association studies via efficient SNP selection.
Brief Bioinform. 2014 Mar;15(2):279-91. doi: 10.1093/bib/bbs087. Epub 2013 Jan 15.
10
The application of the entropy-based statistic for genomic association study of QTL.
J Genet Genomics. 2008 Mar;35(3):183-8. doi: 10.1016/S1673-8527(08)60025-9.

引用本文的文献

1
Identification of novel genes for triple-negative breast cancer with semiparametric gene-based analysis.
J Appl Stat. 2021 Sep 11;50(3):691-702. doi: 10.1080/02664763.2021.1973387. eCollection 2023.
2
LDAK-GBAT: Fast and powerful gene-based association testing using summary statistics.
Am J Hum Genet. 2023 Jan 5;110(1):23-29. doi: 10.1016/j.ajhg.2022.11.010. Epub 2022 Dec 7.
3
Genetic association-based functional analysis detects as a potential gene involved in fat accumulation.
Front Genet. 2022 Aug 12;13:951025. doi: 10.3389/fgene.2022.951025. eCollection 2022.
5
Genome-Wide Association Study of Latent Cognitive Measures in Adolescence: Genetic Overlap With Intelligence and Education.
Mind Brain Educ. 2019 Aug;13(3):224-233. doi: 10.1111/mbe.12198. Epub 2019 Jun 30.
6
Phenotypic and Genomic Local Adaptation across Latitude and Altitude in Populus trichocarpa.
Genome Biol Evol. 2019 Aug 1;11(8):2256-2272. doi: 10.1093/gbe/evz151.
10
Gene-based mapping and pathway analysis of metabolic traits in dairy cows.
PLoS One. 2015 Mar 19;10(3):e0122325. doi: 10.1371/journal.pone.0122325. eCollection 2015.

本文引用的文献

1
Rare-variant association testing for sequencing data with the sequence kernel association test.
Am J Hum Genet. 2011 Jul 15;89(1):82-93. doi: 10.1016/j.ajhg.2011.05.029. Epub 2011 Jul 7.
2
An entropy test for single-locus genetic association analysis.
BMC Genet. 2010 Mar 23;11:19. doi: 10.1186/1471-2156-11-19.
3
Rare variants create synthetic genome-wide associations.
PLoS Biol. 2010 Jan 26;8(1):e1000294. doi: 10.1371/journal.pbio.1000294.
4
Prioritizing GWAS results: A review of statistical methods and recommendations for their application.
Am J Hum Genet. 2010 Jan;86(1):6-22. doi: 10.1016/j.ajhg.2009.11.017.
5
Bioinformatics challenges for genome-wide association studies.
Bioinformatics. 2010 Feb 15;26(4):445-55. doi: 10.1093/bioinformatics/btp713. Epub 2010 Jan 6.
6
Gene-centric genomewide association study via entropy.
Genetics. 2008 May;179(1):637-50. doi: 10.1534/genetics.107.082370. Epub 2008 May 5.
7
Analysis of multiple SNPs in a candidate gene or region.
Genet Epidemiol. 2008 Sep;32(6):560-6. doi: 10.1002/gepi.20330.
8
Entropy-based joint analysis for two-stage genome-wide association studies.
J Hum Genet. 2007;52(9):747-756. doi: 10.1007/s10038-007-0177-7. Epub 2007 Aug 9.
9
Improved power by use of a weighted score test for linkage disequilibrium mapping.
Am J Hum Genet. 2007 Feb;80(2):353-60. doi: 10.1086/511312. Epub 2006 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验