Suppr超能文献

一类用于捕获再捕获数据的隐马尔可夫模型,该模型考虑了时间、异质性和行为效应。

A class of latent Markov models for capture-recapture data allowing for time, heterogeneity, and behavior effects.

作者信息

Bartolucci Francesco, Pennoni Fulvia

机构信息

Department of Economics, Finance and Statistics, University of Perugia, Via A. Pascoli 20, 06123 Perugia, Italy.

出版信息

Biometrics. 2007 Jun;63(2):568-78. doi: 10.1111/j.1541-0420.2006.00702.x.

Abstract

We propose an extension of the latent class model for the analysis of capture-recapture data which allows us to take into account the effect of a capture on the behavior of a subject with respect to future captures. The approach is based on the assumption that the variable indexing the latent class of a subject follows a Markov chain with transition probabilities depending on the previous capture history. Several constraints are allowed on these transition probabilities and on the parameters of the conditional distribution of the capture configuration given the latent process. We also allow for the presence of discrete explanatory variables, which may affect the parameters of the latent process. To estimate the resulting models, we rely on the conditional maximum likelihood approach and for this aim we outline an EM algorithm. We also give some simple rules for point and interval estimation of the population size. The approach is illustrated by applying it to two data sets concerning small mammal populations.

摘要

我们提出了一种潜在类别模型的扩展方法,用于分析捕获 - 再捕获数据,该方法使我们能够考虑一次捕获对个体未来捕获行为的影响。该方法基于这样的假设:对个体潜在类别的索引变量遵循一个马尔可夫链,其转移概率取决于先前的捕获历史。这些转移概率以及给定潜在过程的捕获配置的条件分布参数都允许有若干约束。我们还允许存在离散的解释变量,其可能会影响潜在过程的参数。为了估计所得模型,我们依赖于条件最大似然法,为此我们概述了一种期望最大化(EM)算法。我们还给出了一些关于总体大小的点估计和区间估计的简单规则。通过将该方法应用于两个关于小型哺乳动物种群的数据集对其进行了说明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验