Yang Hsin-Chou, Chao Anne
Institute of Statistics, National Tsing Hua University, Hsin-Chu, Taiwan.
Biometrics. 2005 Dec;61(4):1010-7. doi: 10.1111/j.1541-0420.2005.00372.x.
A bivariate Markov chain approach that includes both enduring (long-term) and ephemeral (short-term) behavioral effects in models for capture-recapture experiments is proposed. The capture history of each animal is modeled as a Markov chain with a bivariate state space with states determined by the capture status (capture/noncapture) and marking status (marked/unmarked). In this framework, a conditional-likelihood method is used to estimate the population size and the transition probabilities. The classical behavioral model that assumes only an enduring behavioral effect is included as a special case of the bivariate Markovian model. Another special case that assumes only an ephemeral behavioral effect reduces to a univariate Markov chain based on capture/noncapture status. The model with the ephemeral behavioral effect is extended to incorporate time effects; in this model, in contrast to extensions of the classical behavioral model, all parameters are identifiable. A data set is analyzed to illustrate the use of the Markovian models in interpreting animals' behavioral response. Simulation results are reported to examine the performance of the estimators.
本文提出了一种双变量马尔可夫链方法,该方法在捕获 - 再捕获实验模型中纳入了持久(长期)和短暂(短期)行为效应。每只动物的捕获历史被建模为一个具有双变量状态空间的马尔可夫链,其状态由捕获状态(捕获/未捕获)和标记状态(标记/未标记)确定。在此框架下,使用条件似然法来估计种群大小和转移概率。仅假设存在持久行为效应的经典行为模型作为双变量马尔可夫模型的一个特例包含在内。另一个仅假设存在短暂行为效应的特例简化为基于捕获/未捕获状态的单变量马尔可夫链。具有短暂行为效应的模型被扩展以纳入时间效应;在该模型中,与经典行为模型的扩展不同,所有参数都是可识别的。分析了一个数据集以说明马尔可夫模型在解释动物行为反应中的应用。报告了模拟结果以检验估计器的性能。