Suppr超能文献

动脉屈曲的生物力学模型。

A biomechanical model of artery buckling.

作者信息

Han Hai-Chao

机构信息

Department of Mechanical Engineering, The University of Texas at San Antonio, Biomedical Engineering Program, UTSA-UTHSCSA, San Antonio, TX 78249, USA.

出版信息

J Biomech. 2007;40(16):3672-8. doi: 10.1016/j.jbiomech.2007.06.018. Epub 2007 Aug 8.

Abstract

The stability of arteries under blood pressure load is essential to the maintenance of normal arterial function and the loss of stability can lead to tortuosity and kinking that are associated with significant clinical complications. However, mechanical analysis of arterial bent buckling is lacking. To address this issue, this paper presents a biomechanical model of arterial buckling. Using an elastic cylindrical arterial model, the mechanical equations for arterial buckling were developed and the critical buckling pressure was found to be a function of the wall stiffness (Young's modulus), arterial radius, length, wall thickness, and the axial strain. Both the model equations and experimental results demonstrated that the critical pressure is related to the axial strain. Arteries may buckle and become tortuous due to reduced (subphysiological) axial strain, hypertensive pressure, and a weakened wall. These results are in accordance with, and provide a possible explanation to the clinical observations that hypertension and aging are the risk factors for arterial tortuosity and kinking. The current model is also applicable to veins and ureters.

摘要

动脉在血压负荷下的稳定性对于维持正常动脉功能至关重要,而稳定性的丧失会导致动脉迂曲和扭结,进而引发严重的临床并发症。然而,目前缺乏对动脉弯曲屈曲的力学分析。为了解决这一问题,本文提出了一种动脉屈曲的生物力学模型。通过使用弹性圆柱形动脉模型,推导了动脉屈曲的力学方程,发现临界屈曲压力是壁刚度(杨氏模量)、动脉半径、长度、壁厚和轴向应变的函数。模型方程和实验结果均表明,临界压力与轴向应变有关。由于轴向应变降低(低于生理水平)、高血压以及动脉壁减弱,动脉可能会发生屈曲并变得迂曲。这些结果与临床观察结果一致,并为高血压和衰老作为动脉迂曲和扭结的危险因素提供了一种可能的解释。当前模型也适用于静脉和输尿管。

相似文献

1
A biomechanical model of artery buckling.
J Biomech. 2007;40(16):3672-8. doi: 10.1016/j.jbiomech.2007.06.018. Epub 2007 Aug 8.
2
Comment on "A biomechanical model of artery buckling" published on Journal of Biomechanics (volume 40, issue 16, pages 3672-3678).
J Biomech. 2010 Mar 3;43(4):801-2; author reply 802-3. doi: 10.1016/j.jbiomech.2009.09.055. Epub 2009 Oct 30.
3
The mechanical buckling of curved arteries.
Mol Cell Biomech. 2009 Jun;6(2):93-9.
4
Nonlinear buckling of blood vessels: a theoretical study.
J Biomech. 2008 Aug 28;41(12):2708-13. doi: 10.1016/j.jbiomech.2008.06.012. Epub 2008 Jul 23.
5
Mechanical buckling of artery under pulsatile pressure.
J Biomech. 2012 Apr 30;45(7):1192-8. doi: 10.1016/j.jbiomech.2012.01.035. Epub 2012 Feb 21.
6
Mechanical buckling of arterioles in collateral development.
J Theor Biol. 2013 Jan 7;316:42-8. doi: 10.1016/j.jtbi.2012.09.029. Epub 2012 Sep 30.
7
A thick walled viscoelastic model for the mechanics of arteries.
J Biomech. 1969 Oct;2(4):443-54. doi: 10.1016/0021-9290(69)90019-0.
8
Buckling instability in arteries.
J Theor Biol. 2015 Apr 21;371:1-8. doi: 10.1016/j.jtbi.2015.01.039. Epub 2015 Feb 7.
9
Blood vessel buckling within soft surrounding tissue generates tortuosity.
J Biomech. 2009 Dec 11;42(16):2797-801. doi: 10.1016/j.jbiomech.2009.07.033. Epub 2009 Sep 15.
10
Mechanical buckling of veins under internal pressure.
Ann Biomed Eng. 2010 Apr;38(4):1345-53. doi: 10.1007/s10439-010-9929-1. Epub 2010 Jan 22.

引用本文的文献

1
Incidence of optic nerve kinking in a cohort of patients with Normal tension glaucoma.
Eye (Lond). 2025 May;39(7):1270-1275. doi: 10.1038/s41433-025-03608-5. Epub 2025 Jan 18.
2
Mechanical characterization and torsional buckling of pediatric cardiovascular materials.
Biomech Model Mechanobiol. 2024 Jun;23(3):845-860. doi: 10.1007/s10237-023-01809-z. Epub 2024 Feb 15.
3
A structural approach to 3D-printing arterial phantoms with physiologically comparable mechanical characteristics: Preliminary observations.
Proc Inst Mech Eng H. 2022 Sep;236(9):1388-1402. doi: 10.1177/09544119221114207. Epub 2022 Aug 1.
5
Buckling of Arteries With Noncircular Cross Sections: Theory and Finite Element Simulations.
Front Physiol. 2021 Aug 13;12:712636. doi: 10.3389/fphys.2021.712636. eCollection 2021.
6
7
A nonlinear rotation-free shell formulation with prestressing for vascular biomechanics.
Sci Rep. 2020 Oct 16;10(1):17528. doi: 10.1038/s41598-020-74277-5.
8
Fluid-structure interaction modeling of aneurysmal arteries under steady-state and pulsatile blood flow: a stability analysis.
Comput Methods Biomech Biomed Engin. 2018 Feb;21(3):219-231. doi: 10.1080/10255842.2018.1439478. Epub 2018 Feb 15.
9
Novel Methodology for Characterizing Regional Variations in the Material Properties of Murine Aortas.
J Biomech Eng. 2016 Jul 1;138(7):0710051-07100515. doi: 10.1115/1.4033674.
10
A Computational Model for Biomechanical Effects of Arterial Compliance Mismatch.
Appl Bionics Biomech. 2015;2015:213236. doi: 10.1155/2015/213236. Epub 2015 Mar 16.

本文引用的文献

2
Changes of opening angle in hypertensive and hypotensive arteries in 3-day organ culture.
J Biomech. 2006;39(13):2410-8. doi: 10.1016/j.jbiomech.2005.08.003. Epub 2005 Sep 19.
3
Sustained axial loading lengthens arteries in organ culture.
Ann Biomed Eng. 2005 Jul;33(7):867-77. doi: 10.1007/s10439-005-3488-x.
4
Partial off-loading of longitudinal tension induces arterial tortuosity.
Arterioscler Thromb Vasc Biol. 2005 May;25(5):957-62. doi: 10.1161/01.ATV.0000161277.46464.11. Epub 2005 Mar 3.
5
Surgical approach to kinking and coiling of the internal carotid artery.
J Cardiovasc Surg (Torino). 2004 Feb;45(1):43-8.
7
Kinking of the internal carotid artery.
Lancet. 1961 Feb 25;1(7174):424-6. doi: 10.1016/s0140-6736(61)90004-6.
8
Arterial wall adaptation under elevated longitudinal stretch in organ culture.
Ann Biomed Eng. 2003 Apr;31(4):403-11. doi: 10.1114/1.1561291.
10
Revascularization of the internal carotid artery for isolated, stenotic, and symptomatic kinking.
Arch Surg. 2003 Feb;138(2):192-7. doi: 10.1001/archsurg.138.2.192.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验