Suppr超能文献

静脉在内部压力下的力学屈曲。

Mechanical buckling of veins under internal pressure.

机构信息

Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA.

出版信息

Ann Biomed Eng. 2010 Apr;38(4):1345-53. doi: 10.1007/s10439-010-9929-1. Epub 2010 Jan 22.

Abstract

Venous tortuosity is associated with multiple disease states and is often thought to be a consequence of venous hypertension and chronic venous disease. However, the underlying mechanisms of vein tortuosity are unclear. We hypothesized that increased pressure causes vein buckling that leads to a tortuous appearance. The specific aim of this study was to determine the critical buckling pressure of veins. We determined the buckling pressure of porcine jugular veins and measured the mechanical properties of these veins. Our results showed that the veins buckle when the transmural pressure exceeds a critical pressure that is strongly related to the axial stretch ratio in the veins. The critical pressures of the eight veins tested were 14.2 +/- 5.4 and 26.4 +/- 9.0 mmHg at axial stretch ratio 1.5 and 1.7, respectively. In conclusion, veins buckle into a tortuous shape at high lumen pressures or reduced axial stretch ratios. Our results are useful in understanding the development of venous tortuosity associated with varicose veins, venous valvular insufficiency, diabetic retinopathy, and vein grafts.

摘要

静脉迂曲与多种疾病状态有关,通常被认为是静脉高压和慢性静脉疾病的结果。然而,静脉迂曲的潜在机制尚不清楚。我们假设,压力增加导致静脉弯曲,从而导致迂曲外观。本研究的具体目的是确定静脉的临界弯曲压力。我们确定了猪颈静脉的弯曲压力,并测量了这些静脉的机械性能。我们的结果表明,当跨壁压力超过与静脉轴向拉伸比密切相关的临界压力时,静脉会发生弯曲。在轴向拉伸比为 1.5 和 1.7 时,测试的 8 条静脉的临界压力分别为 14.2 +/- 5.4 和 26.4 +/- 9.0 mmHg。总之,在高腔压力或降低的轴向拉伸比下,静脉会弯曲成迂曲形状。我们的研究结果有助于理解与静脉曲张、静脉瓣膜功能不全、糖尿病视网膜病变和静脉移植物相关的静脉迂曲的发展。

相似文献

1
Mechanical buckling of veins under internal pressure.
Ann Biomed Eng. 2010 Apr;38(4):1345-53. doi: 10.1007/s10439-010-9929-1. Epub 2010 Jan 22.
2
Twist buckling of veins under torsional loading.
J Biomech. 2017 Jun 14;58:123-130. doi: 10.1016/j.jbiomech.2017.04.018. Epub 2017 May 5.
3
A biomechanical model of artery buckling.
J Biomech. 2007;40(16):3672-8. doi: 10.1016/j.jbiomech.2007.06.018. Epub 2007 Aug 8.
4
Nonlinear buckling of blood vessels: a theoretical study.
J Biomech. 2008 Aug 28;41(12):2708-13. doi: 10.1016/j.jbiomech.2008.06.012. Epub 2008 Jul 23.
5
The theoretical foundation for artery buckling under internal pressure.
J Biomech Eng. 2009 Dec;131(12):124501. doi: 10.1115/1.4000080.
6
Stability of carotid artery under steady-state and pulsatile blood flow: a fluid-structure interaction study.
J Biomech Eng. 2015 Jun;137(6):061007. doi: 10.1115/1.4030011. Epub 2015 Mar 25.
7
Mechanical buckling of arterioles in collateral development.
J Theor Biol. 2013 Jan 7;316:42-8. doi: 10.1016/j.jtbi.2012.09.029. Epub 2012 Sep 30.
8
Computational simulations of the helical buckling behavior of blood vessels.
Int J Numer Method Biomed Eng. 2019 Dec;35(12):e3277. doi: 10.1002/cnm.3277. Epub 2019 Nov 27.
9
Blood vessel buckling within soft surrounding tissue generates tortuosity.
J Biomech. 2009 Dec 11;42(16):2797-801. doi: 10.1016/j.jbiomech.2009.07.033. Epub 2009 Sep 15.
10
Mechanical buckling of artery under pulsatile pressure.
J Biomech. 2012 Apr 30;45(7):1192-8. doi: 10.1016/j.jbiomech.2012.01.035. Epub 2012 Feb 21.

引用本文的文献

1
Incidence of optic nerve kinking in a cohort of patients with Normal tension glaucoma.
Eye (Lond). 2025 May;39(7):1270-1275. doi: 10.1038/s41433-025-03608-5. Epub 2025 Jan 18.
2
Mechanical characterization and torsional buckling of pediatric cardiovascular materials.
Biomech Model Mechanobiol. 2024 Jun;23(3):845-860. doi: 10.1007/s10237-023-01809-z. Epub 2024 Feb 15.
3
Buckling of Arteries With Noncircular Cross Sections: Theory and Finite Element Simulations.
Front Physiol. 2021 Aug 13;12:712636. doi: 10.3389/fphys.2021.712636. eCollection 2021.
5
Effect of valve lesion on venous valve cycle: A modified immersed finite element modeling.
PLoS One. 2019 Mar 4;14(3):e0213012. doi: 10.1371/journal.pone.0213012. eCollection 2019.
7
Haemodynamic Recovery Properties of the Torsioned Testicular Artery Lumen.
Sci Rep. 2017 Nov 14;7(1):15570. doi: 10.1038/s41598-017-15680-3.
8
Twist buckling of veins under torsional loading.
J Biomech. 2017 Jun 14;58:123-130. doi: 10.1016/j.jbiomech.2017.04.018. Epub 2017 May 5.
9
Effect of Axial Stretch on Lumen Collapse of Arteries.
J Biomech Eng. 2016 Dec 1;138(12):1245031-6. doi: 10.1115/1.4034785.
10
Critical buckling pressure in mouse carotid arteries with altered elastic fibers.
J Mech Behav Biomed Mater. 2015 Jun;46:69-82. doi: 10.1016/j.jmbbm.2015.02.013. Epub 2015 Feb 28.

本文引用的文献

1
Blood vessel buckling within soft surrounding tissue generates tortuosity.
J Biomech. 2009 Dec 11;42(16):2797-801. doi: 10.1016/j.jbiomech.2009.07.033. Epub 2009 Sep 15.
2
Preliminary ocular histopathological observations on heterozygous NEMO-deficient mice.
Exp Eye Res. 2009 Mar;88(3):613-6. doi: 10.1016/j.exer.2008.10.027. Epub 2008 Nov 24.
3
Matrix metalloproteinases in venous tissue remodeling and varicose vein formation.
Curr Vasc Pharmacol. 2008 Jul;6(3):158-72. doi: 10.2174/157016108784911957.
4
Mechanical mechanisms of thrombosis in intact bent microvessels of rat mesentery.
J Biomech. 2008 Aug 28;41(12):2726-34. doi: 10.1016/j.jbiomech.2008.06.013. Epub 2008 Jul 24.
5
Nonlinear buckling of blood vessels: a theoretical study.
J Biomech. 2008 Aug 28;41(12):2708-13. doi: 10.1016/j.jbiomech.2008.06.012. Epub 2008 Jul 23.
7
Mechanisms of varicose vein formation: valve dysfunction and wall dilation.
Phlebology. 2008;23(2):85-98. doi: 10.1258/phleb.2007.007027.
8
Early remodeling of lower extremity vein grafts: inflammation influences biomechanical adaptation.
J Vasc Surg. 2008 Jun;47(6):1235-42. doi: 10.1016/j.jvs.2008.01.009. Epub 2008 Apr 28.
9
Diabetes and the tortuosity of vessels of the bulbar conjunctiva.
Ophthalmology. 2008 Jun;115(6):e27-32. doi: 10.1016/j.ophtha.2008.02.009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验