Suppr超能文献

动脉在脉动压力下的力学屈曲。

Mechanical buckling of artery under pulsatile pressure.

机构信息

Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA.

出版信息

J Biomech. 2012 Apr 30;45(7):1192-8. doi: 10.1016/j.jbiomech.2012.01.035. Epub 2012 Feb 21.

Abstract

Tortuosity that often occurs in carotid and other arteries has been shown to be associated with high blood pressure, atherosclerosis, and other diseases. However the mechanisms of tortuosity development are not clear. Our previous studies have suggested that arteries buckling could be a possible mechanism for the initiation of tortuous shape but artery buckling under pulsatile flow condition has not been fully studied. The objectives of this study were to determine the artery critical buckling pressure under pulsatile pressure both experimentally and theoretically, and to elucidate the relationship of critical pressures under pulsatile flow, steady flow, and static pressure. We first tested the buckling pressures of porcine carotid arteries under these loading conditions, and then proposed a nonlinear elastic artery model to examine the buckling pressures under pulsatile pressure conditions. Experimental results showed that under pulsatile pressure arteries buckled when the peak pressures were approximately equal to the critical buckling pressures under static pressure. This was also confirmed by model simulations at low pulse frequencies. Our results provide an effective tool to predict artery buckling pressure under pulsatile pressure.

摘要

在颈动脉和其他动脉中经常出现的迂曲与高血压、动脉粥样硬化和其他疾病有关。然而,迂曲发展的机制尚不清楚。我们之前的研究表明,动脉屈曲可能是迂曲形状开始的一种可能机制,但脉动流条件下的动脉屈曲尚未得到充分研究。本研究的目的是确定脉动压力下动脉的临界屈曲压力,包括实验和理论两方面,并阐明脉动流、稳态流和静态压力下的临界压力之间的关系。我们首先测试了猪颈动脉在这些加载条件下的屈曲压力,然后提出了一个非线性弹性动脉模型来研究脉动压力下的屈曲压力。实验结果表明,在脉动压力下,当峰值压力大约等于静态压力下的临界屈曲压力时,动脉会发生屈曲。在较低的脉冲频率下,模型模拟也证实了这一点。我们的结果为预测脉动压力下的动脉屈曲压力提供了一种有效的工具。

相似文献

1
Mechanical buckling of artery under pulsatile pressure.
J Biomech. 2012 Apr 30;45(7):1192-8. doi: 10.1016/j.jbiomech.2012.01.035. Epub 2012 Feb 21.
2
Stability of carotid artery under steady-state and pulsatile blood flow: a fluid-structure interaction study.
J Biomech Eng. 2015 Jun;137(6):061007. doi: 10.1115/1.4030011. Epub 2015 Mar 25.
3
Fluid-structure interaction modeling of aneurysmal arteries under steady-state and pulsatile blood flow: a stability analysis.
Comput Methods Biomech Biomed Engin. 2018 Feb;21(3):219-231. doi: 10.1080/10255842.2018.1439478. Epub 2018 Feb 15.
4
Mechanical instability of normal and aneurysmal arteries.
J Biomech. 2014 Dec 18;47(16):3868-3875. doi: 10.1016/j.jbiomech.2014.10.010. Epub 2014 Oct 27.
5
A biomechanical model of artery buckling.
J Biomech. 2007;40(16):3672-8. doi: 10.1016/j.jbiomech.2007.06.018. Epub 2007 Aug 8.
6
Smooth muscle cell contraction increases the critical buckling pressure of arteries.
J Biomech. 2013 Feb 22;46(4):841-4. doi: 10.1016/j.jbiomech.2012.11.040. Epub 2012 Dec 20.
7
Artery buckling analysis using a four-fiber wall model.
J Biomech. 2014 Aug 22;47(11):2790-6. doi: 10.1016/j.jbiomech.2014.06.005. Epub 2014 Jun 11.
8
Effects of elastin degradation and surrounding matrix support on artery stability.
Am J Physiol Heart Circ Physiol. 2012 Feb 15;302(4):H873-84. doi: 10.1152/ajpheart.00463.2011. Epub 2011 Dec 9.
9
Nonlinear buckling of blood vessels: a theoretical study.
J Biomech. 2008 Aug 28;41(12):2708-13. doi: 10.1016/j.jbiomech.2008.06.012. Epub 2008 Jul 23.
10
Buckling instability in arteries.
J Theor Biol. 2015 Apr 21;371:1-8. doi: 10.1016/j.jtbi.2015.01.039. Epub 2015 Feb 7.

引用本文的文献

1
Buckling of Arteries With Noncircular Cross Sections: Theory and Finite Element Simulations.
Front Physiol. 2021 Aug 13;12:712636. doi: 10.3389/fphys.2021.712636. eCollection 2021.
2
Influence of Artery Straightening on Local Hemodynamics in Left Anterior Descending (LAD) Artery after Stent Implantation.
Cardiol Res Pract. 2020 May 22;2020:6970817. doi: 10.1155/2020/6970817. eCollection 2020.
4
Fluid-structure interaction modeling of aneurysmal arteries under steady-state and pulsatile blood flow: a stability analysis.
Comput Methods Biomech Biomed Engin. 2018 Feb;21(3):219-231. doi: 10.1080/10255842.2018.1439478. Epub 2018 Feb 15.
5
Effect of Axial Stretch on Lumen Collapse of Arteries.
J Biomech Eng. 2016 Dec 1;138(12):1245031-6. doi: 10.1115/1.4034785.
6
Artery buckling analysis using a two-layered wall model with collagen dispersion.
J Mech Behav Biomed Mater. 2016 Jul;60:515-524. doi: 10.1016/j.jmbbm.2016.03.007. Epub 2016 Mar 16.
7
Critical buckling pressure in mouse carotid arteries with altered elastic fibers.
J Mech Behav Biomed Mater. 2015 Jun;46:69-82. doi: 10.1016/j.jmbbm.2015.02.013. Epub 2015 Feb 28.
8
Stability of carotid artery under steady-state and pulsatile blood flow: a fluid-structure interaction study.
J Biomech Eng. 2015 Jun;137(6):061007. doi: 10.1115/1.4030011. Epub 2015 Mar 25.
9
Artery buckling affects the mechanical stress in atherosclerotic plaques.
Biomed Eng Online. 2015;14 Suppl 1(Suppl 1):S4. doi: 10.1186/1475-925X-14-S1-S4. Epub 2015 Jan 9.
10
Mechanical instability of normal and aneurysmal arteries.
J Biomech. 2014 Dec 18;47(16):3868-3875. doi: 10.1016/j.jbiomech.2014.10.010. Epub 2014 Oct 27.

本文引用的文献

1
Twisted blood vessels: symptoms, etiology and biomechanical mechanisms.
J Vasc Res. 2012;49(3):185-97. doi: 10.1159/000335123. Epub 2012 Mar 14.
2
Effects of Geometric Variations on the Buckling of Arteries.
Int J Appl Mech. 2011 Oct 5;3(2):385-406. doi: 10.1142/S1758825111001044.
3
Tortuosity triggers platelet activation and thrombus formation in microvessels.
J Biomech Eng. 2011 Dec;133(12):121004. doi: 10.1115/1.4005478.
4
Effects of elastin degradation and surrounding matrix support on artery stability.
Am J Physiol Heart Circ Physiol. 2012 Feb 15;302(4):H873-84. doi: 10.1152/ajpheart.00463.2011. Epub 2011 Dec 9.
5
A Nonlinear Thin-Wall Model for Vein Buckling.
Cardiovasc Eng. 2010 Dec 1;1(4):282-289. doi: 10.1007/s13239-010-0024-4.
6
Determination of the critical buckling pressure of blood vessels using the energy approach.
Ann Biomed Eng. 2011 Mar;39(3):1032-40. doi: 10.1007/s10439-010-0212-2. Epub 2010 Nov 30.
7
Effects of Axial Stretch on Cell Proliferation and Intimal Thickness in Arteries in Organ Culture.
Cell Mol Bioeng. 2010 Sep 1;3(3):286-295. doi: 10.1007/s12195-010-0128-9.
8
The theoretical foundation for artery buckling under internal pressure.
J Biomech Eng. 2009 Dec;131(12):124501. doi: 10.1115/1.4000080.
9
Mechanical buckling of veins under internal pressure.
Ann Biomed Eng. 2010 Apr;38(4):1345-53. doi: 10.1007/s10439-010-9929-1. Epub 2010 Jan 22.
10
Alterations of pulse pressure stimulate arterial wall matrix remodeling.
J Biomech Eng. 2009 Oct;131(10):101011. doi: 10.1115/1.3202785.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验