Suppr超能文献

相对风险和置信区间可通过多变量逻辑回归间接轻松计算得出。

Relative risks and confidence intervals were easily computed indirectly from multivariable logistic regression.

作者信息

Localio A Russell, Margolis David J, Berlin Jesse A

机构信息

Division of Biostatistics, Department of Biostatistics and Epidemiology, Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6021, USA.

出版信息

J Clin Epidemiol. 2007 Sep;60(9):874-82. doi: 10.1016/j.jclinepi.2006.12.001. Epub 2007 Jan 18.

Abstract

OBJECTIVE

To assess alternative statistical methods for estimating relative risks and their confidence intervals from multivariable binary regression when outcomes are common.

STUDY DESIGN AND SETTING

We performed simulations on two hypothetical groups of patients in a single-center study, either randomized or cohort, and reanalyzed a published observational study. Outcomes of interest were the bias of relative risk estimates, coverage of 95% confidence intervals, and the Akaike information criterion.

RESULTS

According to simulations, a commonly used method of computing confidence intervals for relative risk substantially overstates statistical significance in typical applications when outcomes are common. Generalized linear models other than logistic regression sometimes failed to converge, or produced estimated risks that exceeded 1.0. Conditional or marginal standardization using logistic regression and bootstrap resampling estimated risks within the [0,1] bounds and relative risks with appropriate confidence intervals.

CONCLUSION

Especially when outcomes are common, relative risks and confidence intervals are easily computed indirectly from multivariable logistic regression. Log-linear regression models, by contrast, are problematic when outcomes are common.

摘要

目的

评估在结局常见时,用于从多变量二元回归估计相对风险及其置信区间的替代统计方法。

研究设计与设置

我们在一项单中心研究中对两组假设患者进行了模拟,这两组患者要么是随机分组的,要么是队列研究中的,并且重新分析了一项已发表的观察性研究。感兴趣的结局是相对风险估计值的偏差、95%置信区间的覆盖范围以及赤池信息准则。

结果

根据模拟,当结局常见时,一种常用的计算相对风险置信区间的方法在典型应用中会大幅高估统计显著性。除逻辑回归之外的广义线性模型有时无法收敛,或者产生超过1.0的估计风险。使用逻辑回归和自助重抽样的条件或边际标准化在[0,1]范围内估计风险,并以适当的置信区间估计相对风险。

结论

特别是当结局常见时,相对风险和置信区间可以很容易地从多变量逻辑回归中间接计算得出。相比之下,当结局常见时,对数线性回归模型存在问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验