Suppr超能文献

起搏器通道的分子调控与药理学

Molecular regulation and pharmacology of pacemaker channels.

作者信息

Bois Patrick, Guinamard Romain, Chemaly Antoun E L, Faivre Jean-François, Bescond Jocelyn

机构信息

Département de Physiologie et Physiopathologie Cardiaques, Institut de Physiologie et Biologie Cellulaires, UMR 6187 CNRS Université de Poitiers, Pôle Biologie Santé, Poitiers Cedex, France.

出版信息

Curr Pharm Des. 2007;13(23):2338-49. doi: 10.2174/138161207781368729.

Abstract

The spontaneous activity of cardiac tissue originates in specialized pacemaker cells in the sino-atrial node that generate autonomous rhythmic electrical impulses. A number of regions in the brain are also able to generate spontaneous rhythmic activity to control and regulate important physiological functions. The generation of pacemaker potentials relies on a complex interplay between different types of currents carried by cation channels. Among these currents, the hyperpolarization-activated current (termed I(f), cardiac pacemaker "funny" current, and I(h) in neurons) is the major component contributing to the initiation of cardiac and neuronal excitability and to the modulation of this excitability by neurotransmitters and hormones. I(f) is an inward current activated by hyperpolarization of the membrane potential and by intracellular cyclic nucleotides such as cAMP. The identification at the end of the 1990s of a family of mammalian genes that encode for four Hyperpolarization-activated Cyclic Nucleotide-gated channels, HCN1-4, has made analysis of the location of these channels and the study of their biophysical properties an obtainable goal. As a result, specific agents have been developed for their ability to selectively reduce heart rate by lowering cardiac pacemaker activity where f-channels are their main natural target. These drugs include alinidine, zatebradine, cilobradine, ZD-7288 and ivabradine. Recent data indicate that pharmacological tools such as W7 and genistein, which have been used to identify some intracellular pathways involved in ionic channel modulation, also have the ability to inhibit I(f) directly. This opens new perspectives for the future development of other specific rhythm-lowering agents.

摘要

心脏组织的自发活动起源于窦房结中的特殊起搏细胞,这些细胞产生自主节律性电冲动。大脑中的一些区域也能够产生自发节律性活动,以控制和调节重要的生理功能。起搏电位的产生依赖于阳离子通道所携带的不同类型电流之间的复杂相互作用。在这些电流中,超极化激活电流(在心脏中称为I(f),即心脏起搏“起搏电流”,在神经元中称为I(h))是促成心脏和神经元兴奋性起始以及神经递质和激素对这种兴奋性进行调节的主要成分。I(f)是一种内向电流,由膜电位的超极化和细胞内环状核苷酸如cAMP激活。20世纪90年代末,人们鉴定出了一个哺乳动物基因家族,该家族编码四种超极化激活的环核苷酸门控通道HCN1 - 4,这使得对这些通道的定位分析及其生物物理特性的研究成为一个可实现的目标。因此,已经开发出了一些特定药物,它们能够通过降低心脏起搏活动来选择性降低心率,而f通道是其主要天然靶点。这些药物包括阿利尼定、扎替雷定、西洛雷定、ZD - 7288和伊伐布雷定。最近的数据表明,诸如W7和染料木黄酮等药理学工具,它们曾被用于识别一些参与离子通道调节的细胞内途径,也具有直接抑制I(f)的能力这为未来开发其他特定的降低节律药物开辟了新的前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验