Suppr超能文献

电场对肌动蛋白丝的限制与操控。

Confinement and manipulation of actin filaments by electric fields.

作者信息

Arsenault Mark E, Zhao Hui, Purohit Prashant K, Goldman Yale E, Bau Haim H

机构信息

Department of Mechanical Engineering and Applied Mechanics, Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

出版信息

Biophys J. 2007 Oct 15;93(8):L42-4. doi: 10.1529/biophysj.107.114538. Epub 2007 Aug 10.

Abstract

When an AC electric field was applied across a small gap between two metal electrodes elevated above a surface, rhodamine-phalloidin-labeled actin filaments were attracted to the gap and became suspended between the two electrodes. The variance <s2(x)> of each filament's horizontal, lateral displacement was measured as a function of electric field intensity and position along the filament. <s2(x)> markedly decreased as the electric field intensity increased. Hypothesizing that the electric field induces tension in the filament, we estimated the tension using a linear, Brownian dynamic model. Our experimental method provides a novel means for trapping and manipulating biological filaments and for probing the surface conductance and mechanical properties of single polymers.

摘要

当在高于表面的两个金属电极之间的小间隙上施加交流电场时,罗丹明 - 鬼笔环肽标记的肌动蛋白丝被吸引到间隙中并悬浮在两个电极之间。测量了每根丝的水平横向位移的方差<s2(x)>作为电场强度和沿丝的位置的函数。随着电场强度的增加,<s2(x)>显著降低。假设电场在丝中诱导张力,我们使用线性布朗动力学模型估计了张力。我们的实验方法为捕获和操纵生物丝以及探测单一聚合物的表面电导率和机械性能提供了一种新方法。

相似文献

1
Confinement and manipulation of actin filaments by electric fields.
Biophys J. 2007 Oct 15;93(8):L42-4. doi: 10.1529/biophysj.107.114538. Epub 2007 Aug 10.
2
Comparison of Brownian-dynamics-based estimates of polymer tension with direct force measurements.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Nov;82(5 Pt 1):051923. doi: 10.1103/PhysRevE.82.051923. Epub 2010 Nov 17.
3
Trapping probability analysis of a DNA trap using electric and hydrodrag force fields in tapered microchannels.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 May;79(5 Pt 1):051902. doi: 10.1103/PhysRevE.79.051902. Epub 2009 May 8.
4
Viscoelasticity of entangled actin networks studied by long-pulse magnetic bead microrheometry.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Dec;72(6 Pt 1):061916. doi: 10.1103/PhysRevE.72.061916. Epub 2005 Dec 23.
5
Multiscale impact of nucleotides and cations on the conformational equilibrium, elasticity and rheology of actin filaments and crosslinked networks.
Biomech Model Mechanobiol. 2015 Oct;14(5):1143-55. doi: 10.1007/s10237-015-0660-6. Epub 2015 Feb 24.
6
Viscoelasticity of cross-linked actin networks: experimental tests, mechanical modeling and finite-element analysis.
Acta Biomater. 2013 Jul;9(7):7343-53. doi: 10.1016/j.actbio.2013.03.008. Epub 2013 Mar 21.
7
Dynamics of single polymers in a stagnation flow induced by electrokinetics.
Phys Rev Lett. 2004 Dec 31;93(26 Pt 1):268105. doi: 10.1103/PhysRevLett.93.268105. Epub 2004 Dec 20.
8
Basic theory of dielectrophoresis and electrorotation.
IEEE Eng Med Biol Mag. 2003 Nov-Dec;22(6):33-42. doi: 10.1109/memb.2003.1304999.
9
Attachment conditions control actin filament buckling and the production of forces.
Biophys J. 2007 Apr 1;92(7):2546-58. doi: 10.1529/biophysj.106.094672. Epub 2007 Jan 5.

引用本文的文献

1
Recent advances in bioelectronics chemistry.
Chem Soc Rev. 2020 Nov 21;49(22):7978-8035. doi: 10.1039/d0cs00333f. Epub 2020 Jul 16.
3
On the Impact of Electrostatic Correlations on the Double-Layer Polarization of a Spherical Particle in an Alternating Current Field.
Langmuir. 2018 May 15;34(19):5592-5599. doi: 10.1021/acs.langmuir.8b00855. Epub 2018 May 2.
4
An Overview of Sub-Cellular Mechanisms Involved in the Action of TTFields.
Int J Environ Res Public Health. 2016 Nov 12;13(11):1128. doi: 10.3390/ijerph13111128.
5
Mechanical heterogeneity favors fragmentation of strained actin filaments.
Biophys J. 2015 May 5;108(9):2270-81. doi: 10.1016/j.bpj.2015.03.058.
6
Comparison of Brownian-dynamics-based estimates of polymer tension with direct force measurements.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Nov;82(5 Pt 1):051923. doi: 10.1103/PhysRevE.82.051923. Epub 2010 Nov 17.
7
Single-molecule stepping and structural dynamics of myosin X.
Nat Struct Mol Biol. 2010 Apr;17(4):485-91. doi: 10.1038/nsmb.1785. Epub 2010 Apr 4.
8
Neural cytoskeleton capabilities for learning and memory.
J Biol Phys. 2010 Jan;36(1):3-21. doi: 10.1007/s10867-009-9153-0.
9
Using electrical and optical tweezers to facilitate studies of molecular motors.
Phys Chem Chem Phys. 2009 Jun 28;11(24):4834-9. doi: 10.1039/b821861g. Epub 2009 Apr 16.

本文引用的文献

1
ELECTRIC BIREFRINGENCE OF ACTIN.
Biochim Biophys Acta. 1964 Nov 29;88:528-40. doi: 10.1016/0926-6577(64)90096-8.
3
The polyelectrolyte nature of F-actin and the mechanism of actin bundle formation.
J Biol Chem. 1996 Apr 12;271(15):8556-63. doi: 10.1074/jbc.271.15.8556.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验