Suppr超能文献

附着条件控制肌动蛋白丝的屈曲和力的产生。

Attachment conditions control actin filament buckling and the production of forces.

作者信息

Berro Julien, Michelot Alphée, Blanchoin Laurent, Kovar David R, Martiel Jean-Louis

机构信息

Laboratoire Techniques de l'Imagerie, de la Modélisation et de la Complexité, Institut National de la Santé et de la Recherche Médicale and Université Joseph Fourier, F38706, La Tronche, France.

出版信息

Biophys J. 2007 Apr 1;92(7):2546-58. doi: 10.1529/biophysj.106.094672. Epub 2007 Jan 5.

Abstract

Actin polymerization is the driving force for a large number of cellular processes. Formation of lamellipodia and filopodia at the leading edge of motile cells requires actin polymerization induced mechanical deformation of the plasma membrane. To generate different types of membrane protrusions, the mechanical properties of actin filaments can be constrained by interacting proteins. A striking example of such constraint is the buckling of actin filaments generated in vitro by the cooperative effect of a processive actin nucleating factor (formin) and a molecular motor (myosin II). We developed a physical model based on equations for an elastic rod that accounts for actin filament buckling. Both ends of the rod were maintained in a fixed position in space and we considered three sets of boundary conditions. The model qualitatively and quantitatively reproduces the shape distribution of actin filaments. We found that actin polymerization counterpoises a force in the range 0.4-1.6 pN for moderate end-to-end distance (approximately 1 microm) and could be as large as 10 pN for shorter distances. If the actin rod attachment includes a spring, we discovered that the stiffness must be in the range 0.1-1.2 pN/nm to account for the observed buckling.

摘要

肌动蛋白聚合是大量细胞过程的驱动力。运动细胞前沿片状伪足和丝状伪足的形成需要肌动蛋白聚合诱导的质膜机械变形。为了产生不同类型的膜突起,肌动蛋白丝的机械性能可受相互作用蛋白的限制。这种限制的一个显著例子是由持续性肌动蛋白成核因子(formin)和分子马达(肌球蛋白II)的协同作用在体外产生的肌动蛋白丝的屈曲。我们基于弹性杆方程开发了一个物理模型,该模型考虑了肌动蛋白丝的屈曲。杆的两端在空间中保持固定位置,我们考虑了三组边界条件。该模型定性和定量地再现了肌动蛋白丝的形状分布。我们发现,对于中等的端到端距离(约1微米),肌动蛋白聚合可抵消0.4 - 1.6皮牛顿范围内的力,而对于较短距离,该力可高达10皮牛顿。如果肌动蛋白杆附着包括一个弹簧,我们发现其刚度必须在0.1 - 1.2皮牛顿/纳米范围内,才能解释观察到的屈曲现象。

相似文献

1
Attachment conditions control actin filament buckling and the production of forces.
Biophys J. 2007 Apr 1;92(7):2546-58. doi: 10.1529/biophysj.106.094672. Epub 2007 Jan 5.
2
Nematic and polar order in active filament solutions.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Dec;72(6 Pt 1):060901. doi: 10.1103/PhysRevE.72.060901. Epub 2005 Dec 12.
3
Formation and destabilization of actin filaments with tetramethylrhodamine-modified actin.
Biophys J. 2004 Aug;87(2):1136-45. doi: 10.1529/biophysj.104.042242.
4
Force of an actin spring.
Biophys J. 2007 May 15;92(10):3729-33. doi: 10.1529/biophysj.106.099994. Epub 2007 Mar 9.
5
VASP governs actin dynamics by modulating filament anchoring.
Biophys J. 2007 Feb 1;92(3):1081-9. doi: 10.1529/biophysj.106.091884. Epub 2006 Nov 10.
6
Performance of a population of independent filaments in lamellipodial protrusion.
Biophys J. 2008 Aug;95(3):1393-411. doi: 10.1529/biophysj.107.125005. Epub 2008 Apr 4.
7
Contractile stress generation by actomyosin gels.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Nov;74(5 Pt 1):051912. doi: 10.1103/PhysRevE.74.051912. Epub 2006 Nov 17.
8
Mechanics model for actin-based motility.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Feb;79(2 Pt 1):021916. doi: 10.1103/PhysRevE.79.021916. Epub 2009 Feb 26.
9
Diffusion rate limitations in actin-based propulsion of hard and deformable particles.
Biophys J. 2006 Aug 15;91(4):1548-63. doi: 10.1529/biophysj.106.082362. Epub 2006 May 26.
10
Insertional assembly of actin filament barbed ends in association with formins produces piconewton forces.
Proc Natl Acad Sci U S A. 2004 Oct 12;101(41):14725-30. doi: 10.1073/pnas.0405902101. Epub 2004 Sep 17.

引用本文的文献

2
A minimal model of elastic instabilities in biological filament bundles.
J R Soc Interface. 2022 Sep;19(194):20220287. doi: 10.1098/rsif.2022.0287. Epub 2022 Sep 21.
3
Synaptopodin stress fiber and contractomere at the epithelial junction.
J Cell Biol. 2022 May 2;221(5). doi: 10.1083/jcb.202011162. Epub 2022 Apr 13.
4
Forces generated by lamellipodial actin filament elongation regulate the WAVE complex during cell migration.
Nat Cell Biol. 2021 Nov;23(11):1148-1162. doi: 10.1038/s41556-021-00786-8. Epub 2021 Nov 4.
5
Mechanical behavior of actin and spectrin subjected to high strain rate: A molecular dynamics simulation study.
Comput Struct Biotechnol J. 2021 Mar 26;19:1738-1749. doi: 10.1016/j.csbj.2021.03.026. eCollection 2021.
6
Force Production by a Bundle of Growing Actin Filaments Is Limited by Its Mechanical Properties.
Biophys J. 2020 Jan 7;118(1):182-192. doi: 10.1016/j.bpj.2019.10.039. Epub 2019 Nov 6.
7
Single-Turnover Activation of Arp2/3 Complex by Dip1 May Balance Nucleation of Linear versus Branched Actin Filaments.
Curr Biol. 2019 Oct 7;29(19):3331-3338.e7. doi: 10.1016/j.cub.2019.08.023. Epub 2019 Sep 26.
8
Plastic Deformation and Fragmentation of Strained Actin Filaments.
Biophys J. 2019 Aug 6;117(3):453-463. doi: 10.1016/j.bpj.2019.06.018. Epub 2019 Jun 25.
10
Structural organization and energy storage in crosslinked actin assemblies.
PLoS Comput Biol. 2018 May 29;14(5):e1006150. doi: 10.1371/journal.pcbi.1006150. eCollection 2018 May.

本文引用的文献

1
Staying in shape with formins.
Dev Cell. 2006 Jun;10(6):693-706. doi: 10.1016/j.devcel.2006.05.001.
2
Control of the assembly of ATP- and ADP-actin by formins and profilin.
Cell. 2006 Jan 27;124(2):423-35. doi: 10.1016/j.cell.2005.11.038.
3
In silico reconstitution of Listeria propulsion exhibits nano-saltation.
PLoS Biol. 2004 Dec;2(12):e412. doi: 10.1371/journal.pbio.0020412. Epub 2004 Nov 30.
4
Real-time measurements of actin filament polymerization by total internal reflection fluorescence microscopy.
Biophys J. 2005 Feb;88(2):1387-402. doi: 10.1529/biophysj.104.047399. Epub 2004 Nov 19.
6
Insertional assembly of actin filament barbed ends in association with formins produces piconewton forces.
Proc Natl Acad Sci U S A. 2004 Oct 12;101(41):14725-30. doi: 10.1073/pnas.0405902101. Epub 2004 Sep 17.
7
Actin polymerization-driven molecular movement of mDia1 in living cells.
Science. 2004 Mar 26;303(5666):2007-10. doi: 10.1126/science.1093923.
8
A conserved mechanism for Bni1- and mDia1-induced actin assembly and dual regulation of Bni1 by Bud6 and profilin.
Mol Biol Cell. 2004 Feb;15(2):896-907. doi: 10.1091/mbc.e03-08-0621. Epub 2003 Dec 2.
9
ADF/cofilin use an intrinsic mode of F-actin instability to disrupt actin filaments.
J Cell Biol. 2003 Dec 8;163(5):1057-66. doi: 10.1083/jcb.200308144. Epub 2003 Dec 1.
10
Mammalian formin-1 participates in adherens junctions and polymerization of linear actin cables.
Nat Cell Biol. 2004 Jan;6(1):21-30. doi: 10.1038/ncb1075. Epub 2003 Nov 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验