Berro Julien, Michelot Alphée, Blanchoin Laurent, Kovar David R, Martiel Jean-Louis
Laboratoire Techniques de l'Imagerie, de la Modélisation et de la Complexité, Institut National de la Santé et de la Recherche Médicale and Université Joseph Fourier, F38706, La Tronche, France.
Biophys J. 2007 Apr 1;92(7):2546-58. doi: 10.1529/biophysj.106.094672. Epub 2007 Jan 5.
Actin polymerization is the driving force for a large number of cellular processes. Formation of lamellipodia and filopodia at the leading edge of motile cells requires actin polymerization induced mechanical deformation of the plasma membrane. To generate different types of membrane protrusions, the mechanical properties of actin filaments can be constrained by interacting proteins. A striking example of such constraint is the buckling of actin filaments generated in vitro by the cooperative effect of a processive actin nucleating factor (formin) and a molecular motor (myosin II). We developed a physical model based on equations for an elastic rod that accounts for actin filament buckling. Both ends of the rod were maintained in a fixed position in space and we considered three sets of boundary conditions. The model qualitatively and quantitatively reproduces the shape distribution of actin filaments. We found that actin polymerization counterpoises a force in the range 0.4-1.6 pN for moderate end-to-end distance (approximately 1 microm) and could be as large as 10 pN for shorter distances. If the actin rod attachment includes a spring, we discovered that the stiffness must be in the range 0.1-1.2 pN/nm to account for the observed buckling.
肌动蛋白聚合是大量细胞过程的驱动力。运动细胞前沿片状伪足和丝状伪足的形成需要肌动蛋白聚合诱导的质膜机械变形。为了产生不同类型的膜突起,肌动蛋白丝的机械性能可受相互作用蛋白的限制。这种限制的一个显著例子是由持续性肌动蛋白成核因子(formin)和分子马达(肌球蛋白II)的协同作用在体外产生的肌动蛋白丝的屈曲。我们基于弹性杆方程开发了一个物理模型,该模型考虑了肌动蛋白丝的屈曲。杆的两端在空间中保持固定位置,我们考虑了三组边界条件。该模型定性和定量地再现了肌动蛋白丝的形状分布。我们发现,对于中等的端到端距离(约1微米),肌动蛋白聚合可抵消0.4 - 1.6皮牛顿范围内的力,而对于较短距离,该力可高达10皮牛顿。如果肌动蛋白杆附着包括一个弹簧,我们发现其刚度必须在0.1 - 1.2皮牛顿/纳米范围内,才能解释观察到的屈曲现象。