Priel Avner, Tuszynski Jack A, Woolf Nancy J
Department of Physics, University of Alberta, Edmonton, AB, T6G 2J1, Canada.
J Biol Phys. 2010 Jan;36(1):3-21. doi: 10.1007/s10867-009-9153-0.
This paper proposes a physical model involving the key structures within the neural cytoskeleton as major players in molecular-level processing of information required for learning and memory storage. In particular, actin filaments and microtubules are macromolecules having highly charged surfaces that enable them to conduct electric signals. The biophysical properties of these filaments relevant to the conduction of ionic current include a condensation of counterions on the filament surface and a nonlinear complex physical structure conducive to the generation of modulated waves. Cytoskeletal filaments are often directly connected with both ionotropic and metabotropic types of membrane-embedded receptors, thereby linking synaptic inputs to intracellular functions. Possible roles for cable-like, conductive filaments in neurons include intracellular information processing, regulating developmental plasticity, and mediating transport. The cytoskeletal proteins form a complex network capable of emergent information processing, and they stand to intervene between inputs to and outputs from neurons. In this manner, the cytoskeletal matrix is proposed to work with neuronal membrane and its intrinsic components (e.g., ion channels, scaffolding proteins, and adaptor proteins), especially at sites of synaptic contacts and spines. An information processing model based on cytoskeletal networks is proposed that may underlie certain types of learning and memory.
本文提出了一个物理模型,该模型认为神经细胞骨架中的关键结构是学习和记忆存储所需信息的分子水平处理的主要参与者。特别是,肌动蛋白丝和微管是具有高电荷表面的大分子,这使它们能够传导电信号。这些细丝与离子电流传导相关的生物物理特性包括细丝表面反离子的凝聚以及有利于产生调制波的非线性复杂物理结构。细胞骨架细丝通常与离子型和代谢型膜嵌入受体直接相连,从而将突触输入与细胞内功能联系起来。神经元中类似电缆的导电细丝的可能作用包括细胞内信息处理、调节发育可塑性和介导运输。细胞骨架蛋白形成一个能够进行涌现信息处理的复杂网络,它们可能在神经元的输入和输出之间起干预作用。通过这种方式,有人提出细胞骨架基质与神经元膜及其内在成分(如离子通道、支架蛋白和衔接蛋白)协同工作,尤其是在突触接触和棘突部位。提出了一种基于细胞骨架网络的信息处理模型,该模型可能是某些类型学习和记忆的基础。