Suppr超能文献

关于漏斗状能量景观对多结构域Src酪氨酸激酶组装和调节的重要性。

On the importance of a funneled energy landscape for the assembly and regulation of multidomain Src tyrosine kinases.

作者信息

Faraldo-Gómez José D, Roux Benoît

机构信息

Center for Integrative Science, University of Chicago, Chicago, IL 60637, USA.

出版信息

Proc Natl Acad Sci U S A. 2007 Aug 21;104(34):13643-8. doi: 10.1073/pnas.0704041104. Epub 2007 Aug 15.

Abstract

Regulation of signaling pathways in the cell often involves multidomain allosteric enzymes that are able to adopt alternate active or inactive conformations in response to specific stimuli. It is therefore of great interest to elucidate the energetic and structural determinants that govern the conformational plasticity of these proteins. In this study, free-energy computations have been used to address this fundamental question, focusing on one important family of signaling enzymes, the Src tyrosine kinases. Inactivation of these enzymes depends on the formation of an assembly comprising a tandem of SH3 and SH2 modules alongside a catalytic domain. Activation results from the release of the SH3 and SH2 domains, which are then believed to be structurally uncoupled by virtue of a flexible peptide link. In contrast to this view, this analysis shows that inactivation depends critically on the intrinsic propensity of the SH3-SH2 tandem to adopt conformations that are conducive to the assembled inactive state, even when no interactions with the rest of the kinase are possible. This funneling of the available conformational space is encoded within the SH3-SH2 connector, which appears to have evolved to modulate the flexibility of the tandem in solution. To further substantiate this notion, we show how constitutively activating mutations in the SH3-SH2 connector shift the assembly equilibrium toward the disassembled, active state. Based on a similar analysis of several constructs of the kinase complex, we propose that assembly is characterized by the progressive optimization of the protein's conformational energy, with little or no energetic frustration.

摘要

细胞中信号通路的调控通常涉及多结构域变构酶,这些酶能够响应特定刺激而采用交替的活性或非活性构象。因此,阐明控制这些蛋白质构象可塑性的能量和结构决定因素具有极大的意义。在这项研究中,自由能计算已被用于解决这个基本问题,重点关注一类重要的信号酶——Src酪氨酸激酶。这些酶的失活取决于一个由串联的SH3和SH2模块以及一个催化结构域组成的组装体的形成。激活则源于SH3和SH2结构域的释放,随后人们认为它们通过一个柔性肽连接在结构上解耦。与这种观点相反,本分析表明,失活关键取决于SH3 - SH2串联体采用有利于组装的非活性状态构象的内在倾向,即使在与激酶其余部分没有相互作用的情况下也是如此。可用构象空间的这种导向作用编码在SH3 - SH2连接器中,该连接器似乎已经进化以调节串联体在溶液中的灵活性。为了进一步证实这一观点,我们展示了SH3 - SH2连接器中的组成型激活突变如何将组装平衡向解离的活性状态转移。基于对激酶复合物几种构建体的类似分析,我们提出组装的特征是蛋白质构象能量的逐步优化,几乎没有或没有能量受挫。

相似文献

1
On the importance of a funneled energy landscape for the assembly and regulation of multidomain Src tyrosine kinases.
Proc Natl Acad Sci U S A. 2007 Aug 21;104(34):13643-8. doi: 10.1073/pnas.0704041104. Epub 2007 Aug 15.
2
The Activation of c-Src Tyrosine Kinase: Conformational Transition Pathway and Free Energy Landscape.
J Phys Chem B. 2017 Apr 20;121(15):3352-3363. doi: 10.1021/acs.jpcb.6b08409. Epub 2016 Oct 28.
3
Two-state dynamics of the SH3-SH2 tandem of Abl kinase and the allosteric role of the N-cap.
Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):E3372-80. doi: 10.1073/pnas.1303966110. Epub 2013 Aug 19.
4
Tyrosine Kinase Activation and Conformational Flexibility: Lessons from Src-Family Tyrosine Kinases.
Acc Chem Res. 2017 May 16;50(5):1193-1201. doi: 10.1021/acs.accounts.7b00012. Epub 2017 Apr 20.
6
The evolutionarily conserved arrangement of domains in SRC family kinases is important for substrate recognition.
Biochemistry. 2008 Oct 14;47(41):10871-80. doi: 10.1021/bi800930e. Epub 2008 Sep 20.
8
SH3-SH2 domain orientation in Src kinases: NMR studies of Fyn.
Structure. 2002 Jul;10(7):901-11. doi: 10.1016/s0969-2126(02)00781-5.
9
Roles of the SH2 and SH3 domains in the regulation of neuronal Src kinase functions.
FEBS J. 2011 Feb;278(4):643-53. doi: 10.1111/j.1742-4658.2010.07985.x. Epub 2010 Dec 30.

引用本文的文献

1
Glycine substitution in SH3-SH2 connector of Hck tyrosine kinase causes population shift from assembled to disassembled state.
Biochim Biophys Acta Gen Subj. 2020 Jul;1864(7):129604. doi: 10.1016/j.bbagen.2020.129604. Epub 2020 Mar 26.
3
Predicting the Conformational Variability of Abl Tyrosine Kinase using Molecular Dynamics Simulations and Markov State Models.
J Chem Theory Comput. 2018 May 8;14(5):2721-2732. doi: 10.1021/acs.jctc.7b01170. Epub 2018 Apr 3.
4
Atomic view of the energy landscape in the allosteric regulation of Abl kinase.
Nat Struct Mol Biol. 2017 Nov;24(11):893-901. doi: 10.1038/nsmb.3470. Epub 2017 Sep 25.
5
Tyrosine Kinase Activation and Conformational Flexibility: Lessons from Src-Family Tyrosine Kinases.
Acc Chem Res. 2017 May 16;50(5):1193-1201. doi: 10.1021/acs.accounts.7b00012. Epub 2017 Apr 20.
6
The Activation of c-Src Tyrosine Kinase: Conformational Transition Pathway and Free Energy Landscape.
J Phys Chem B. 2017 Apr 20;121(15):3352-3363. doi: 10.1021/acs.jpcb.6b08409. Epub 2016 Oct 28.
7
Current state of theoretical and experimental studies of the voltage-dependent anion channel (VDAC).
Biochim Biophys Acta. 2016 Jul;1858(7 Pt B):1778-90. doi: 10.1016/j.bbamem.2016.02.026. Epub 2016 Mar 3.
9
Hotspot mutations in KIT receptor differentially modulate its allosterically coupled conformational dynamics: impact on activation and drug sensitivity.
PLoS Comput Biol. 2014 Jul 31;10(7):e1003749. doi: 10.1371/journal.pcbi.1003749. eCollection 2014 Jul.
10
P-loop conformation governed crizotinib resistance in G2032R-mutated ROS1 tyrosine kinase: clues from free energy landscape.
PLoS Comput Biol. 2014 Jul 17;10(7):e1003729. doi: 10.1371/journal.pcbi.1003729. eCollection 2014 Jul.

本文引用的文献

1
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
2
Absolute binding free energy calculations using molecular dynamics simulations with restraining potentials.
Biophys J. 2006 Oct 15;91(8):2798-814. doi: 10.1529/biophysj.106.084301. Epub 2006 Jul 14.
3
Conformational basis for SH2-Tyr(P)527 binding in Src inactivation.
J Biol Chem. 2006 Aug 18;281(33):23776-84. doi: 10.1074/jbc.M604219200. Epub 2006 Jun 21.
4
Organization of the SH3-SH2 unit in active and inactive forms of the c-Abl tyrosine kinase.
Mol Cell. 2006 Mar 17;21(6):787-98. doi: 10.1016/j.molcel.2006.01.035.
5
Mechanisms of protein assembly: lessons from minimalist models.
Acc Chem Res. 2006 Feb;39(2):135-42. doi: 10.1021/ar040204a.
6
7
Activation of the Src family kinase Hck without SH3-linker release.
J Biol Chem. 2005 Dec 9;280(49):40832-7. doi: 10.1074/jbc.M508782200. Epub 2005 Oct 6.
9
Crystal structures of active SRC kinase domain complexes.
J Mol Biol. 2005 Oct 21;353(2):222-31. doi: 10.1016/j.jmb.2005.08.023.
10
Calculation of absolute protein-ligand binding free energy from computer simulations.
Proc Natl Acad Sci U S A. 2005 May 10;102(19):6825-30. doi: 10.1073/pnas.0409005102. Epub 2005 May 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验