Huang Z, Chen Y, Pan M
Research Institute of Biomedical Engineering, School of Info-Physics and Geomatics Engineering, Central South University, Changsha, Hunan Province, PR China.
J Med Eng Technol. 2007 Sep-Oct;31(5):381-9. doi: 10.1080/03091900601165314.
In this paper, based on Hilbert-Huang transform (HHT), we develop a new non-invasive time-frequency analysis method to characterize the dynamic behaviour of atrial fibrillation (AF) from surface ECG. We first extract f waves from single-lead ECG records of AF patients using PCA analysis. To capture the non-stationary behaviours of AF signals at different time scales, we use HHT to find the Hilbert spectrum and instantaneous frequency (IF) distribution of residual signals from principal component analysis. Two important feature variables, namely mean IF (mIF) and index of frequency stability over time (IS), are derived from the IF distribution, and in combination will be able to effectively discriminate two different AF types: self-terminating and non-terminating termination. The proposed AF signal decomposition and analysis method will help us efficiently differentiate individual AF patients, advance our understanding of AF mechanisms, and provide useful guidelines for improving administration of AF patients, especially paroxysmal AF.
在本文中,基于希尔伯特-黄变换(HHT),我们开发了一种新的非侵入性时频分析方法,用于从体表心电图中表征心房颤动(AF)的动态行为。我们首先使用主成分分析(PCA)从房颤患者的单导联心电图记录中提取f波。为了捕捉房颤信号在不同时间尺度上的非平稳行为,我们使用HHT来找到主成分分析后残差信号的希尔伯特谱和瞬时频率(IF)分布。从IF分布中导出了两个重要的特征变量,即平均IF(mIF)和随时间的频率稳定性指数(IS),两者结合能够有效区分两种不同类型的房颤:自限性和非自限性。所提出的房颤信号分解和分析方法将有助于我们有效区分个体房颤患者,加深我们对房颤机制的理解,并为改善房颤患者(尤其是阵发性房颤患者)的管理提供有用的指导。