Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, NY, USA.
Biomed Eng Online. 2012 Apr 3;11:17. doi: 10.1186/1475-925X-11-17.
The dominant frequency of the Fourier power spectrum is useful to analyze complex fractionated atrial electrograms (CFAE), but spectral resolution is limited and uniform from DC to the Nyquist frequency. Herein the spectral resolution of a recently described and relatively new spectral estimation technique is compared to the Fourier radix-2 implementation.
In 10 paroxysmal and 10 persistent atrial fibrillation patients, 216 CFAE were acquired from the pulmonary vein ostia and left atrial free wall (977 Hz sampling rate, 8192 sample points, 8.4 s duration). With these parameter values, in the physiologic range of 3-10 Hz, two frequency components can theoretically be resolved at 0.24 Hz using Fourier analysis and at 0.10 Hz on average using the new technique. For testing, two closely-spaced periodic components were synthesized from two different CFAE recordings, and combined with two other CFAE recordings magnified 2×, that served as interference signals. The ability to resolve synthesized frequency components in the range 3-4 Hz, 4-5 Hz, …, 9-10 Hz was determined for 15 trials each (105 total).
With the added interference, frequency resolution averaged 0.29 ± 0.22 Hz for Fourier versus 0.16 ± 0.10 Hz for the new method (p < 0.001). The misalignment error of spectral peaks versus actual values was ±0.023 Hz for Fourier and ±0.009 Hz for the new method (p < 0.001). One or both synthesized peaks were lost in the noise floor 13/105 times using Fourier versus 4/105 times using the new method.
Within the physiologically relevant frequency range for characterization of CFAE, the new method has approximately twice the spectral resolution of Fourier analysis, there is less error in estimating frequencies, and peaks appear more readily above the noise floor. Theoretically, when interference is not present, to resolve frequency components separated by 0.10 Hz using Fourier analysis would require an 18.2 s sequence duration, versus 8.4 s with the new method.
傅里叶功率谱的优势频率可用于分析复杂碎裂心房电图(CFAE),但频谱分辨率从直流到奈奎斯特频率是有限且均匀的。在此,比较了最近描述的和相对较新的频谱估计技术的频谱分辨率与傅里叶基 2 实现。
在 10 例阵发性和 10 例持续性心房颤动患者中,从肺静脉口和左心房游离壁采集 216 例 CFAE(977 Hz 采样率,8192 个采样点,8.4 s 持续时间)。使用这些参数值,在 3-10 Hz 的生理范围内,理论上可以使用傅里叶分析在 0.24 Hz 处解析两个频率分量,而使用新技术平均可以解析 0.10 Hz 的频率分量。为了进行测试,从两个不同的 CFAE 记录中合成两个紧密间隔的周期性分量,并将其与放大 2 倍的另外两个 CFAE 记录结合,作为干扰信号。确定了在 3-4 Hz、4-5 Hz、...、9-10 Hz 范围内解析合成频率分量的能力,每个试验进行了 15 次(总共 105 次)。
加入干扰后,傅里叶的频率分辨率平均为 0.29±0.22 Hz,而新方法的频率分辨率为 0.16±0.10 Hz(p<0.001)。傅里叶的频谱峰与实际值的偏差误差为±0.023 Hz,而新方法的偏差误差为±0.009 Hz(p<0.001)。在使用傅里叶时,有 13/105 次丢失了一个或两个合成峰,而在使用新方法时,有 4/105 次丢失了一个或两个合成峰。
在用于 CFAE 特征描述的生理相关频率范围内,新方法的频谱分辨率大约是傅里叶分析的两倍,在估计频率时误差较小,并且在噪声底上方更容易出现峰。从理论上讲,当不存在干扰时,使用傅里叶分析要解析间隔为 0.10 Hz 的频率分量,需要 18.2 s 的序列持续时间,而使用新方法则需要 8.4 s。