Carlotto Silvia, Cimino Paola, Zerbetto Mirco, Franco Lorenzo, Corvaja Carlo, Crisma Marco, Formaggio Fernando, Toniolo Claudio, Polimeno Antonino, Barone Vincenzo
Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, I-35131 Padova, Italy.
J Am Chem Soc. 2007 Sep 12;129(36):11248-58. doi: 10.1021/ja073516s. Epub 2007 Aug 18.
In this work we present an effective and flexible computational approach, which is the result of an ongoing development in our groups, allowing the complete a priori simulation of the ESR spectra of complex systems in solution. The usefulness and reliability of the method are demonstrated on the very demanding playground represented by the tuning of the equilibrium between 3(10)- and alpha-helices of polypeptides by different solvents. The starting point is the good agreement between computed and X-ray diffraction structures for the 3(10)-helix adopted by the double spin-labelled heptapeptide Fmoc-(Aib-Aib-TOAC)2-Aib-OMe. Next, density functional computations, including dispersion interactions and bulk solvent effects, suggest another energy minimum corresponding to an alpha-helix in polar solvents, which, eventually, becomes the most stable structure. Computation of magnetic and diffusion tensors provides the basic ingredients for the building of complete spectra by methods rooted in the Stochastic Liouville Equation (SLE). The remarkable agreement between computed and experimental spectra at different temperatures allowed us to identify helical structures in the various solvents. The generality of the computational strategy and its implementation in effective and user-friendly computer codes pave the route toward systematic applications in the field of biomolecules and other complex systems.
在这项工作中,我们提出了一种有效且灵活的计算方法,这是我们团队持续开发的成果,它能够对溶液中复杂体系的电子自旋共振(ESR)光谱进行完整的先验模拟。该方法的实用性和可靠性在极具挑战性的实例中得到了证明,此实例是以不同溶剂对多肽3(10)-螺旋和α-螺旋之间平衡的调节为代表。起点是双自旋标记七肽Fmoc-(Aib-Aib-TOAC)2-Aib-OMe所采用的3(10)-螺旋的计算结构与X射线衍射结构之间的良好一致性。接下来,包括色散相互作用和本体溶剂效应的密度泛函计算表明,在极性溶剂中存在另一个对应于α-螺旋的能量最小值,最终它成为最稳定的结构。磁张量和扩散张量的计算为通过基于随机刘维尔方程(SLE)的方法构建完整光谱提供了基本要素。在不同温度下计算光谱与实验光谱之间的显著一致性使我们能够识别各种溶剂中的螺旋结构。这种计算策略的通用性及其在有效且用户友好的计算机代码中的实现,为在生物分子和其他复杂体系领域的系统应用铺平了道路。