Suppr超能文献

个体差异与奖励预期和奖励预测误差的神经表现。

Individual differences and the neural representations of reward expectation and reward prediction error.

机构信息

Department of Epilepsy, University of Bonn, Sigmund-Freud-Strasse 25, Bonn, Germany.

出版信息

Soc Cogn Affect Neurosci. 2007 Mar;2(1):20-30. doi: 10.1093/scan/nsl021.

Abstract

Reward expectation and reward prediction errors are thought to be critical for dynamic adjustments in decision-making and reward-seeking behavior, but little is known about their representation in the brain during uncertainty and risk-taking. Furthermore, little is known about what role individual differences might play in such reinforcement processes. In this study, it is shown behavioral and neural responses during a decision-making task can be characterized by a computational reinforcement learning model and that individual differences in learning parameters in the model are critical for elucidating these processes. In the fMRI experiment, subjects chose between high- and low-risk rewards. A computational reinforcement learning model computed expected values and prediction errors that each subject might experience on each trial. These outputs predicted subjects' trial-to-trial choice strategies and neural activity in several limbic and prefrontal regions during the task. Individual differences in estimated reinforcement learning parameters proved critical for characterizing these processes, because models that incorporated individual learning parameters explained significantly more variance in the fMRI data than did a model using fixed learning parameters. These findings suggest that the brain engages a reinforcement learning process during risk-taking and that individual differences play a crucial role in modeling this process.

摘要

奖励预期和奖励预测误差被认为对决策和寻求奖励行为的动态调整至关重要,但人们对它们在不确定和冒险情况下大脑中的表现知之甚少。此外,对于个体差异在这种强化过程中可能扮演什么角色,我们知之甚少。在这项研究中,研究表明,决策任务期间的行为和神经反应可以用计算强化学习模型来描述,并且模型中学习参数的个体差异对于阐明这些过程至关重要。在 fMRI 实验中,受试者在高风险和低风险奖励之间进行选择。计算强化学习模型计算了每个受试者在每次试验中可能经历的预期值和预测误差。这些输出预测了受试者在任务期间的逐次选择策略和几个边缘和前额叶区域的神经活动。估计强化学习参数的个体差异被证明对描述这些过程至关重要,因为包含个体学习参数的模型比使用固定学习参数的模型解释了 fMRI 数据中更多的方差。这些发现表明,大脑在冒险时会进行强化学习过程,而个体差异在对该过程进行建模时起着至关重要的作用。

相似文献

6
Policy adjustment in a dynamic economic game.动态经济博弈中的政策调整。
PLoS One. 2006 Dec 20;1(1):e103. doi: 10.1371/journal.pone.0000103.

引用本文的文献

1
Value-Directed Remembering: A Dual-Process Perspective.价值导向记忆:一种双过程视角
Behav Sci (Basel). 2025 Aug 17;15(8):1113. doi: 10.3390/bs15081113.
8

本文引用的文献

1
Reinforcement learning signals predict future decisions.强化学习信号预测未来决策。
J Neurosci. 2007 Jan 10;27(2):371-8. doi: 10.1523/JNEUROSCI.4421-06.2007.
8
Behavioral and neural predictors of upcoming decisions.即将做出决策的行为和神经预测因素。
Cogn Affect Behav Neurosci. 2005 Jun;5(2):117-26. doi: 10.3758/cabn.5.2.117.
9
Learning and decision making in monkeys during a rock-paper-scissors game.猴子在玩剪刀石头布游戏时的学习与决策
Brain Res Cogn Brain Res. 2005 Oct;25(2):416-30. doi: 10.1016/j.cogbrainres.2005.07.003. Epub 2005 Aug 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验