Suppr超能文献

个体差异与奖励预期和奖励预测误差的神经表现。

Individual differences and the neural representations of reward expectation and reward prediction error.

机构信息

Department of Epilepsy, University of Bonn, Sigmund-Freud-Strasse 25, Bonn, Germany.

出版信息

Soc Cogn Affect Neurosci. 2007 Mar;2(1):20-30. doi: 10.1093/scan/nsl021.

Abstract

Reward expectation and reward prediction errors are thought to be critical for dynamic adjustments in decision-making and reward-seeking behavior, but little is known about their representation in the brain during uncertainty and risk-taking. Furthermore, little is known about what role individual differences might play in such reinforcement processes. In this study, it is shown behavioral and neural responses during a decision-making task can be characterized by a computational reinforcement learning model and that individual differences in learning parameters in the model are critical for elucidating these processes. In the fMRI experiment, subjects chose between high- and low-risk rewards. A computational reinforcement learning model computed expected values and prediction errors that each subject might experience on each trial. These outputs predicted subjects' trial-to-trial choice strategies and neural activity in several limbic and prefrontal regions during the task. Individual differences in estimated reinforcement learning parameters proved critical for characterizing these processes, because models that incorporated individual learning parameters explained significantly more variance in the fMRI data than did a model using fixed learning parameters. These findings suggest that the brain engages a reinforcement learning process during risk-taking and that individual differences play a crucial role in modeling this process.

摘要

奖励预期和奖励预测误差被认为对决策和寻求奖励行为的动态调整至关重要,但人们对它们在不确定和冒险情况下大脑中的表现知之甚少。此外,对于个体差异在这种强化过程中可能扮演什么角色,我们知之甚少。在这项研究中,研究表明,决策任务期间的行为和神经反应可以用计算强化学习模型来描述,并且模型中学习参数的个体差异对于阐明这些过程至关重要。在 fMRI 实验中,受试者在高风险和低风险奖励之间进行选择。计算强化学习模型计算了每个受试者在每次试验中可能经历的预期值和预测误差。这些输出预测了受试者在任务期间的逐次选择策略和几个边缘和前额叶区域的神经活动。估计强化学习参数的个体差异被证明对描述这些过程至关重要,因为包含个体学习参数的模型比使用固定学习参数的模型解释了 fMRI 数据中更多的方差。这些发现表明,大脑在冒险时会进行强化学习过程,而个体差异在对该过程进行建模时起着至关重要的作用。

相似文献

1
Individual differences and the neural representations of reward expectation and reward prediction error.
Soc Cogn Affect Neurosci. 2007 Mar;2(1):20-30. doi: 10.1093/scan/nsl021.
2
A computational neuroimaging study of reinforcement learning and goal-directed exploration in schizophrenia spectrum disorders.
Psychol Med. 2023 Oct;53(14):6600-6610. doi: 10.1017/S0033291722003993. Epub 2023 Feb 8.
3
Prefrontal solution to the bias-variance tradeoff during reinforcement learning.
Cell Rep. 2021 Dec 28;37(13):110185. doi: 10.1016/j.celrep.2021.110185.
4
How we learn to make decisions: rapid propagation of reinforcement learning prediction errors in humans.
J Cogn Neurosci. 2014 Mar;26(3):635-44. doi: 10.1162/jocn_a_00509. Epub 2013 Oct 29.
5
Neural substrates of updating the prediction through prediction error during decision making.
Neuroimage. 2017 Aug 15;157:1-12. doi: 10.1016/j.neuroimage.2017.05.041. Epub 2017 May 20.
6
Policy adjustment in a dynamic economic game.
PLoS One. 2006 Dec 20;1(1):e103. doi: 10.1371/journal.pone.0000103.
7
Prediction errors drive dynamic changes in neural patterns that guide behavior.
Cell Rep. 2023 Aug 29;42(8):112931. doi: 10.1016/j.celrep.2023.112931. Epub 2023 Aug 3.
8
Choice, uncertainty and value in prefrontal and cingulate cortex.
Nat Neurosci. 2008 Apr;11(4):389-97. doi: 10.1038/nn2066. Epub 2008 Mar 26.
9
Dorsal-Ventral Reinforcement Learning Network Connectivity and Incentive-Driven Changes in Exploration.
J Neurosci. 2025 Apr 9;45(15):e0422242025. doi: 10.1523/JNEUROSCI.0422-24.2025.
10
Dynamic Interaction between Reinforcement Learning and Attention in Multidimensional Environments.
Neuron. 2017 Jan 18;93(2):451-463. doi: 10.1016/j.neuron.2016.12.040.

引用本文的文献

1
Value-Directed Remembering: A Dual-Process Perspective.
Behav Sci (Basel). 2025 Aug 17;15(8):1113. doi: 10.3390/bs15081113.
4
A neural and behavioral trade-off between value and uncertainty underlies exploratory decisions in normative anxiety.
Mol Psychiatry. 2022 Mar;27(3):1573-1587. doi: 10.1038/s41380-021-01363-z. Epub 2021 Nov 1.
5
Reward and fictive prediction error signals in ventral striatum: asymmetry between factual and counterfactual processing.
Brain Struct Funct. 2021 Jun;226(5):1553-1569. doi: 10.1007/s00429-021-02270-3. Epub 2021 Apr 11.
6
The Prisoner's Dilemma paradigm provides a neurobiological framework for the social decision cascade.
PLoS One. 2021 Mar 18;16(3):e0248006. doi: 10.1371/journal.pone.0248006. eCollection 2021.
8
Social anxiety and dynamic social reinforcement learning in a volatile environment.
Clin Psychol Sci. 2019 Nov 1;7(6):1372-1388. doi: 10.1177/2167702619858425. Epub 2019 Sep 20.
9
Acute Alcohol Intake Produces Widespread Decreases in Cortical Resting Signal Variability in Healthy Social Drinkers.
Alcohol Clin Exp Res. 2020 Jul;44(7):1410-1419. doi: 10.1111/acer.14381. Epub 2020 Jun 18.
10
Time-frequency approaches to investigating changes in feedback processing during childhood and adolescence.
Psychophysiology. 2018 Oct;55(10):e13208. doi: 10.1111/psyp.13208. Epub 2018 Aug 15.

本文引用的文献

1
Reinforcement learning signals predict future decisions.
J Neurosci. 2007 Jan 10;27(2):371-8. doi: 10.1523/JNEUROSCI.4421-06.2007.
2
Separate brain regions code for salience vs. valence during reward prediction in humans.
Hum Brain Mapp. 2007 Apr;28(4):294-302. doi: 10.1002/hbm.20274.
3
Prediction error as a linear function of reward probability is coded in human nucleus accumbens.
Neuroimage. 2006 Jun;31(2):790-5. doi: 10.1016/j.neuroimage.2006.01.001. Epub 2006 Feb 17.
5
Anterior cingulate activity modulates nonlinear decision weight function of uncertain prospects.
Neuroimage. 2006 Apr 1;30(2):668-77. doi: 10.1016/j.neuroimage.2005.09.061.
6
Representation of action-specific reward values in the striatum.
Science. 2005 Nov 25;310(5752):1337-40. doi: 10.1126/science.1115270.
8
Behavioral and neural predictors of upcoming decisions.
Cogn Affect Behav Neurosci. 2005 Jun;5(2):117-26. doi: 10.3758/cabn.5.2.117.
9
Learning and decision making in monkeys during a rock-paper-scissors game.
Brain Res Cogn Brain Res. 2005 Oct;25(2):416-30. doi: 10.1016/j.cogbrainres.2005.07.003. Epub 2005 Aug 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验