Suppr超能文献

腹侧纹状体中的奖励和虚构预测误差信号:事实和反事实处理之间的不对称性。

Reward and fictive prediction error signals in ventral striatum: asymmetry between factual and counterfactual processing.

机构信息

FIDMAG Germanes Hospitalàries Research Foundation, Carrer Antoni Pujades 38, 08830 Sant Boi de Llobregat, Barcelona, Spain.

Universitat de Barcelona, Barcelona, Spain.

出版信息

Brain Struct Funct. 2021 Jun;226(5):1553-1569. doi: 10.1007/s00429-021-02270-3. Epub 2021 Apr 11.

Abstract

Reward prediction error, the difference between the expected and obtained reward, is known to act as a reinforcement learning neural signal. In the current study, we propose a model fitting approach that combines behavioral and neural data to fit computational models of reinforcement learning. Briefly, we penalized subject-specific fitted parameters that moved away too far from the group median, except when that deviation led to an improvement in the model's fit to neural responses. By means of a probabilistic monetary learning task and fMRI, we compared our approach with standard model fitting methods. Q-learning outperformed actor-critic at both behavioral and neural level, although the inclusion of neuroimaging data into model fitting improved the fit of actor-critic models. We observed both action-value and state-value prediction error signals in the striatum, while standard model fitting approaches failed to capture state-value signals. Finally, left ventral striatum correlated with reward prediction error while right ventral striatum with fictive prediction error, suggesting a functional hemispheric asymmetry regarding prediction-error driven learning.

摘要

奖励预测误差,即预期奖励与实际获得奖励之间的差异,被认为是强化学习的神经信号。在本研究中,我们提出了一种模型拟合方法,将行为和神经数据相结合,以拟合强化学习的计算模型。简而言之,我们对偏离群体中位数太远的个体特定拟合参数进行惩罚,但当这种偏差导致模型对神经反应的拟合得到改善时除外。通过概率货币学习任务和 fMRI,我们将我们的方法与标准模型拟合方法进行了比较。在行为和神经水平上,Q-learning 都优于 actor-critic,尽管将神经影像学数据纳入模型拟合可以提高 actor-critic 模型的拟合度。我们在纹状体中观察到了动作值和状态值预测误差信号,而标准的模型拟合方法无法捕捉到状态值信号。最后,左腹侧纹状体与奖励预测误差相关,而右腹侧纹状体与虚拟预测误差相关,这表明在基于预测误差的学习方面存在功能上的半球不对称性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验