Suppr超能文献

兔股骨远端的体内微型计算机断层扫描:可重复性和再现性

In vivo micro-CT scanning of a rabbit distal femur: repeatability and reproducibility.

作者信息

Voor Michael J, Yang Shuo, Burden Robert L, Waddell Seid W

机构信息

Department of Orthopaedic Surgery, Orthopaedic Bioengineering Laboratory, University of Louisville, Louisville, KY 40292, USA.

出版信息

J Biomech. 2008;41(1):186-93. doi: 10.1016/j.jbiomech.2007.06.028. Epub 2007 Aug 22.

Abstract

Before in vivo micro-CT scanning can be used to investigate femoral trabecular microarchitecture over time in rabbits, its repeatability and reproducibility must be demonstrated. To accomplish this, both distal femurs of two 6-month-old New Zealand white rabbits were scanned five times each in 1 day under different conditions (repeatability). Scanning was done at 28 microm isotropic voxel size to produce five image stacks of each femur. Three operators then followed a standard image processing protocol (reproducibility) to isolate two separate cubes from each anterior femoral condyle [total n = (8 cube sites)(5 scans)(3 operators) = 120]. Bone volume fraction (BV/TV) of the eight different cube sites (sample) ranged from 0.408 to 0.501 (mean: 0.453); trabecular thickness (Tb.Th) ranged from 158.1 to 185.5 microm (mean: 168.6 microm); and trabecular separation (Tb.Sp) ranged from 179.4 to 233.1 microm (mean: 204.7 microm). Using ANOVA and the variance component method, the total process variation was +/- 14.1% of the mean BV/TV of 0.453. The sample variation was +/- 13.9% (p < 0.001), the repeatability was +/- 2.1% (p < 0.001), and the reproducibility was +/- 0.1% (p > 0.05). Results were similar for Tb.Th and Tb.Sp. Though the contribution due to repeatability was statistically significant for each of the three indices, the natural sample differences were far greater than differences caused by repeated scanning under different conditions or by different operators processing the images. These findings suggest that in vivo micro-CT scanning of rabbit distal femurs was repeatable and reproducible and can be used with confidence to measure differences in trabecular bone microarchitecture at a single location in a longitudinal study design.

摘要

在利用体内微型计算机断层扫描(micro-CT)来研究兔子股骨小梁微结构随时间的变化之前,必须先证明其可重复性和再现性。为此,在一天内,对两只6月龄新西兰白兔的双侧股骨远端分别进行了5次不同条件下的扫描(可重复性)。扫描时各向同性体素大小为28微米,以生成每侧股骨的5个图像堆栈。然后,三名操作人员按照标准图像处理方案(再现性),从每个股骨髁前方分离出两个独立的立方体[总数n =(8个立方体部位)×(5次扫描)×(3名操作人员)= 120]。八个不同立方体部位(样本)的骨体积分数(BV/TV)范围为0.408至0.501(平均值:0.453);小梁厚度(Tb.Th)范围为158.1至185.5微米(平均值:168.6微米);小梁间距(Tb.Sp)范围为179.4至233.1微米(平均值:204.7微米)。使用方差分析和方差分量法,总过程变异为平均BV/TV 0.453的±14.1%。样本变异为±13.9%(p < 0.001),可重复性为±2.1%(p < 0.001),再现性为±0.1%(p > 0.05)。Tb.Th和Tb.Sp的结果相似。尽管对于这三个指标中的每一个,可重复性造成的影响在统计学上都是显著的,但天然样本差异远大于不同条件下重复扫描或不同操作人员处理图像所导致的差异。这些发现表明,对兔子股骨远端进行体内微型计算机断层扫描具有可重复性和再现性,并且可以放心地用于在纵向研究设计中测量单个位置的小梁骨微结构差异。

相似文献

1
In vivo micro-CT scanning of a rabbit distal femur: repeatability and reproducibility.
J Biomech. 2008;41(1):186-93. doi: 10.1016/j.jbiomech.2007.06.028. Epub 2007 Aug 22.
3
Validation of calcaneus trabecular microstructure measurements by HR-pQCT.
Bone. 2018 Jan;106:69-77. doi: 10.1016/j.bone.2017.09.013. Epub 2017 Oct 3.
6
Multiscale and multimodality computed tomography for cortical bone analysis.
Phys Med Biol. 2016 Dec 21;61(24):8553-8576. doi: 10.1088/0031-9155/61/24/8553. Epub 2016 Nov 15.
7
Human trabecular bone microarchitecture can be assessed independently of density with second generation HR-pQCT.
Bone. 2015 Oct;79:213-21. doi: 10.1016/j.bone.2015.06.006. Epub 2015 Jun 14.
10

引用本文的文献

3
Direct Assessment of Rabbit Cortical Bone Basic Multicellular Unit Longitudinal Erosion Rate: A 4D Synchrotron-Based Approach.
J Bone Miner Res. 2022 Nov;37(11):2244-2258. doi: 10.1002/jbmr.4700. Epub 2022 Oct 3.
4
Cortical Bone Porosity in Rabbit Models of Osteoporosis.
J Bone Miner Res. 2020 Nov;35(11):2211-2228. doi: 10.1002/jbmr.4124. Epub 2020 Sep 22.
9
Minimizing Interpolation Bias and Precision Error in In Vivo µCT-Based Measurements of Bone Structure and Dynamics.
Ann Biomed Eng. 2016 Aug;44(8):2518-2528. doi: 10.1007/s10439-015-1527-9. Epub 2016 Jan 19.

本文引用的文献

2
Evaluation of three-dimensional image registration methodologies for in vivo micro-computed tomography.
Ann Biomed Eng. 2006 Oct;34(10):1587-99. doi: 10.1007/s10439-006-9168-7. Epub 2006 Sep 7.
3
Efficacy of bone marrow-derived stem cells in strengthening osteoporotic bone in a rabbit model.
Tissue Eng. 2006 Jul;12(7):1753-61. doi: 10.1089/ten.2006.12.1753.
5
Monitoring individual morphological changes over time in ovariectomized rats by in vivo micro-computed tomography.
Bone. 2006 Oct;39(4):854-62. doi: 10.1016/j.bone.2006.04.017. Epub 2006 Jun 6.
6
Long-term tissue response to bioabsorbable poly-L-lactide and metallic screws: an experimental study.
Bone. 2006 Oct;39(4):932-7. doi: 10.1016/j.bone.2006.04.009. Epub 2006 Jun 5.
8
Bone loss dynamics result in trabecular alignment in aging and ovariectomized rats.
J Orthop Res. 2006 May;24(5):926-35. doi: 10.1002/jor.20063.
9
Bone repair using a new injectable self-crosslinkable bone substitute.
J Orthop Res. 2006 Apr;24(4):628-35. doi: 10.1002/jor.20125.
10
Cancellous bone adaptation to in vivo loading in a rabbit model.
Bone. 2006 Jun;38(6):871-7. doi: 10.1016/j.bone.2005.11.026. Epub 2006 Jan 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验