Bardella Giampiero, Franchini Simone, Pani Pierpaolo, Ferraina Stefano
Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.
iScience. 2024 Nov 15;27(12):111390. doi: 10.1016/j.isci.2024.111390. eCollection 2024 Dec 20.
Modern neuroscience has evolved into a frontier field that draws on numerous disciplines, resulting in the flourishing of novel conceptual frames primarily inspired by physics and complex systems science. Contributing in this direction, we recently introduced a mathematical framework to describe the spatiotemporal interactions of systems of neurons using lattice field theory, the reference paradigm for theoretical particle physics. In this note, we provide a concise summary of the basics of the theory, aiming to be intuitive to the interdisciplinary neuroscience community. We contextualize our methods, illustrating how to readily connect the parameters of our formulation to experimental variables using well-known renormalization procedures. This synopsis yields the key concepts needed to describe neural networks using lattice physics. Such classes of methods are attention-worthy in an era of blistering improvements in numerical computations, as they can facilitate relating the observation of neural activity to generative models underpinned by physical principles.
现代神经科学已发展成为一个前沿领域,它借鉴了众多学科,这使得主要受物理学和复杂系统科学启发的新颖概念框架蓬勃发展。为朝着这个方向做出贡献,我们最近引入了一个数学框架,使用格场理论来描述神经元系统的时空相互作用,格场理论是理论粒子物理学的参考范式。在本笔记中,我们简要总结了该理论的基础知识,旨在让跨学科神经科学界易于理解。我们将我们的方法置于具体情境中,说明如何使用著名的重整化程序轻松地将我们公式中的参数与实验变量联系起来。这一概述给出了使用晶格物理学描述神经网络所需的关键概念。在数值计算飞速发展的时代,这类方法值得关注,因为它们有助于将神经活动的观测与基于物理原理的生成模型联系起来。