Suppr超能文献

钴靶向肠炎沙门氏菌的多个代谢过程。

Cobalt targets multiple metabolic processes in Salmonella enterica.

作者信息

Thorgersen Michael P, Downs Diana M

机构信息

Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, WI 53706, USA.

出版信息

J Bacteriol. 2007 Nov;189(21):7774-81. doi: 10.1128/JB.00962-07. Epub 2007 Aug 24.

Abstract

Cobalt is essential for growth of Salmonella enterica and other organisms, yet this metal can be toxic when present in excess. Wild-type Salmonella exhibits several metabolic defects when grown in the presence of cobalt, some of which generate visible growth consequences. Work herein identifies sulfur assimilation, iron homeostasis, and Fe-S cluster metabolism as targets for cobalt toxicity. In each case it is proposed that cobalt exerts its effect by one of two mechanisms: direct competition with iron or indirectly through a mechanism that involves the status of reduced thiols in the cell. Cobalt toxicity results in decreased siroheme production, increased expression of the Fur regulon, and decreased activity of Fe-S cluster proteins. The consequences of reduced sulfite reductase activity in particular are exacerbated by the need for glutathione in cobalt resistance. Significantly, independent metabolic perturbations could be detected at cobalt concentrations below those required to generate a detectable growth defect.

摘要

钴对于肠炎沙门氏菌和其他生物体的生长至关重要,但这种金属过量时可能具有毒性。野生型沙门氏菌在钴存在的情况下生长时会表现出几种代谢缺陷,其中一些会产生明显的生长后果。本文的研究确定了硫同化、铁稳态和铁硫簇代谢是钴毒性的作用靶点。在每种情况下,都提出钴通过两种机制之一发挥作用:与铁直接竞争或通过涉及细胞中还原型硫醇状态的机制间接发挥作用。钴毒性导致亚硫酸血红素产量降低、Fur调控子表达增加以及铁硫簇蛋白活性降低。特别是亚硫酸盐还原酶活性降低的后果因钴抗性中对谷胱甘肽的需求而加剧。值得注意的是,在产生可检测到的生长缺陷所需的钴浓度以下就能检测到独立的代谢扰动。

相似文献

1
Cobalt targets multiple metabolic processes in Salmonella enterica.
J Bacteriol. 2007 Nov;189(21):7774-81. doi: 10.1128/JB.00962-07. Epub 2007 Aug 24.
2
Cobalt stress in Escherichia coli and Salmonella enterica: molecular bases for toxicity and resistance.
Metallomics. 2011 Nov;3(11):1130-4. doi: 10.1039/c1mt00099c. Epub 2011 Sep 26.
3
Salmonella enterica strains lacking the frataxin homolog CyaY show defects in Fe-S cluster metabolism in vivo.
J Bacteriol. 2006 Feb;188(3):1175-9. doi: 10.1128/JB.188.3.1175-1179.2006.
4
Anaerobic Cysteine Degradation and Potential Metabolic Coordination in Salmonella enterica and Escherichia coli.
J Bacteriol. 2017 Jul 25;199(16). doi: 10.1128/JB.00117-17. Print 2017 Aug 15.
7
Analysis of yggX and gshA mutants provides insights into the labile iron pool in Salmonella enterica.
J Bacteriol. 2008 Dec;190(23):7608-13. doi: 10.1128/JB.00639-08. Epub 2008 Oct 3.
8
Acquisition of Iron Is Required for Growth of Salmonella spp. in Tomato Fruit.
Appl Environ Microbiol. 2015 Jun;81(11):3663-70. doi: 10.1128/AEM.04257-14. Epub 2015 Mar 20.
10
Fe(III)-mediated cellular toxicity.
Mol Microbiol. 2002 Aug;45(3):711-9. doi: 10.1046/j.1365-2958.2002.03041.x.

引用本文的文献

2
The metal-binding GTPases CobW2 and CobW3 are at the crossroads of zinc and cobalt homeostasis in .
J Bacteriol. 2024 Aug 22;206(8):e0022624. doi: 10.1128/jb.00226-24. Epub 2024 Jul 23.
3
Functional Characterization of the Co Transporter AitP in Sinorhizobium meliloti: A New Player in Fe Homeostasis.
Appl Environ Microbiol. 2023 Mar 29;89(3):e0190122. doi: 10.1128/aem.01901-22. Epub 2023 Feb 28.
4
The DmeRF System Is Involved in Maintaining Cobalt Homeostasis in .
Int J Mol Sci. 2022 Dec 27;24(1):414. doi: 10.3390/ijms24010414.
6
Cobalt Resistance via Detoxification and Mineralization in the Iron-Reducing Bacterium .
Front Microbiol. 2020 Nov 26;11:600463. doi: 10.3389/fmicb.2020.600463. eCollection 2020.
7
The requirement for cobalt in vitamin B: A paradigm for protein metalation.
Biochim Biophys Acta Mol Cell Res. 2021 Jan;1868(1):118896. doi: 10.1016/j.bbamcr.2020.118896. Epub 2020 Oct 21.
9
Fe-S Clusters Emerging as Targets of Therapeutic Drugs.
Oxid Med Cell Longev. 2017;2017:3647657. doi: 10.1155/2017/3647657. Epub 2017 Dec 28.

本文引用的文献

2
Cobalt stress in Escherichia coli. The effect on the iron-sulfur proteins.
J Biol Chem. 2007 Oct 19;282(42):30442-51. doi: 10.1074/jbc.M702519200. Epub 2007 Jul 21.
3
The RcnRA (YohLM) system of Escherichia coli: a connection between nickel, cobalt and iron homeostasis.
Biometals. 2007 Oct;20(5):759-71. doi: 10.1007/s10534-006-9039-6. Epub 2006 Nov 22.
4
Salmonella enterica strains lacking the frataxin homolog CyaY show defects in Fe-S cluster metabolism in vivo.
J Bacteriol. 2006 Feb;188(3):1175-9. doi: 10.1128/JB.188.3.1175-1179.2006.
6
Effect of RyhB small RNA on global iron use in Escherichia coli.
J Bacteriol. 2005 Oct;187(20):6962-71. doi: 10.1128/JB.187.20.6962-6971.2005.
7
Analysis of the heteromeric CsdA-CsdE cysteine desulfurase, assisting Fe-S cluster biogenesis in Escherichia coli.
J Biol Chem. 2005 Jul 22;280(29):26760-9. doi: 10.1074/jbc.M504067200. Epub 2005 May 18.
8
Identification of rcnA (yohM), a nickel and cobalt resistance gene in Escherichia coli.
J Bacteriol. 2005 Apr;187(8):2912-6. doi: 10.1128/JB.187.8.2912-2916.2005.
10
Are respiratory enzymes the primary sources of intracellular hydrogen peroxide?
J Biol Chem. 2004 Nov 19;279(47):48742-50. doi: 10.1074/jbc.M408754200. Epub 2004 Sep 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验