Suppr超能文献

通过表达L-氨基酸α-连接酶的代谢工程化大肠杆菌菌株发酵生产L-丙氨酰-L-谷氨酰胺。

Fermentative production of L-alanyl-L-glutamine by a metabolically engineered Escherichia coli strain expressing L-amino acid alpha-ligase.

作者信息

Tabata Kazuhiko, Hashimoto Shin-Ichi

机构信息

Technical Research Laboratories, Kyowa Hakko Kogyo Co. Ltd., 1-1 Kyowa-cho, Hofu-shi, 747-8522 Yamaguchi, Japan.

出版信息

Appl Environ Microbiol. 2007 Oct;73(20):6378-85. doi: 10.1128/AEM.01249-07. Epub 2007 Aug 24.

Abstract

In spite of its clinical and nutritional importance, l-alanyl-l-glutamine (Ala-Gln) has not been widely used due to the absence of an efficient manufacturing method. Here, we present a novel method for the fermentative production of Ala-Gln using an Escherichia coli strain expressing l-amino acid alpha-ligase (Lal), which catalyzes the formation of dipeptides by combining two amino acids in an ATP-dependent manner. Two metabolic manipulations were necessary for the production of Ala-Gln: reduction of dipeptide-degrading activity by combinatorial disruption of the dpp and pep genes and enhancement of the supply of substrate amino acids by deregulation of glutamine biosynthesis and overexpression of heterologous l-alanine dehydrogenase (Ald). Since expression of Lal was found to hamper cell growth, it was controlled using a stationary-phase-specific promoter. The final strain constructed was designated JKYPQ3 (pepA pepB pepD pepN dpp glnE glnB putA) containing pPE167 (lal and ald expressed under the control of the uspA promoter) or pPE177 (lal and ald expressed under the control of the rpoH promoter). Either strain produced more than 100 mM Ala-Gln extracellularly, in fed-batch cultivation on glucose-ammonium salt medium, without added alanine and glutamine. Because of the characteristics of Lal, no longer peptides (such as tripeptides) or dipeptides containing d-amino acids were formed.

摘要

尽管L-丙氨酰-L-谷氨酰胺(Ala-Gln)具有临床和营养重要性,但由于缺乏有效的生产方法,它尚未得到广泛应用。在此,我们提出了一种利用表达L-氨基酸α-连接酶(Lal)的大肠杆菌菌株发酵生产Ala-Gln的新方法,该酶以ATP依赖的方式通过结合两个氨基酸催化二肽的形成。生产Ala-Gln需要两种代谢操作:通过组合破坏dpp和pep基因降低二肽降解活性,以及通过解除谷氨酰胺生物合成的调控和异源L-丙氨酸脱氢酶(Ald)的过表达增强底物氨基酸的供应。由于发现Lal的表达会阻碍细胞生长,因此使用一个稳定期特异性启动子对其进行调控。构建的最终菌株命名为JKYPQ3(pepA pepB pepD pepN dpp glnE glnB putA),其含有pPE167(lal和ald在uspA启动子控制下表达)或pPE177(lal和ald在rpoH启动子控制下表达)。在葡萄糖-铵盐培养基上进行补料分批培养时,不添加丙氨酸和谷氨酰胺,这两种菌株中的任何一种都能在细胞外产生超过100 mM的Ala-Gln。由于Lal的特性,不会形成更长的肽(如三肽)或含有D-氨基酸的二肽。

相似文献

1
Fermentative production of L-alanyl-L-glutamine by a metabolically engineered Escherichia coli strain expressing L-amino acid alpha-ligase.
Appl Environ Microbiol. 2007 Oct;73(20):6378-85. doi: 10.1128/AEM.01249-07. Epub 2007 Aug 24.
2
Effect of multidrug-efflux transporter genes on dipeptide resistance and overproduction in Escherichia coli.
FEMS Microbiol Lett. 2010 Mar;304(1):12-9. doi: 10.1111/j.1574-6968.2009.01879.x. Epub 2010 Dec 10.
3
Metabolic engineering of Escherichia coli for efficient production of L-alanyl-L-glutamine.
Microb Cell Fact. 2020 Jun 11;19(1):129. doi: 10.1186/s12934-020-01369-2.
5
Multiplex gene knockout raises Ala-Gln production by Escherichia coli expressing amino acid ester acyltransferase.
Appl Microbiol Biotechnol. 2023 Jun;107(11):3523-3533. doi: 10.1007/s00253-023-12550-z. Epub 2023 May 5.
6
Identification of novel L-amino acid alpha-ligases through Hidden Markov Model-based profile analysis.
Biosci Biotechnol Biochem. 2010;74(2):415-8. doi: 10.1271/bbb.90644. Epub 2010 Feb 7.
7
Dipeptide synthesis by L-amino acid ligase from Ralstonia solanacearum.
Biochem Biophys Res Commun. 2008 Jul 4;371(3):536-40. doi: 10.1016/j.bbrc.2008.04.105. Epub 2008 Apr 28.
8
Production of l-alanyl-l-glutamine by recycling E. coli expressing α-amino acid ester acyltransferase.
Bioresour Technol. 2017 Dec;245(Pt B):1603-1609. doi: 10.1016/j.biortech.2017.06.008. Epub 2017 Jun 16.
9
Single mutation alters the substrate specificity of L-amino acid ligase.
Biochemistry. 2014 Apr 29;53(16):2650-60. doi: 10.1021/bi500292b. Epub 2014 Apr 17.
10
Effective production of Pro-Gly by mutagenesis of l-amino acid ligase.
J Biosci Bioeng. 2016 Aug;122(2):155-9. doi: 10.1016/j.jbiosc.2016.01.014. Epub 2016 Mar 24.

引用本文的文献

1
Phosphonoalamides Reveal the Biosynthetic Origin of Phosphonoalanine Natural Products and a Convergent Pathway for Their Diversification.
Angew Chem Int Ed Engl. 2024 Aug 5;63(32):e202405052. doi: 10.1002/anie.202405052. Epub 2024 Jul 9.
2
Exploring metabolic effects of dipeptide feed media on CHO cell cultures by in silico model-guided flux analysis.
Appl Microbiol Biotechnol. 2024 Dec;108(1):123. doi: 10.1007/s00253-023-12997-0. Epub 2024 Jan 16.
4
Production of l-Theanine by Escherichia coli in the Absence of Supplemental Ethylamine.
Appl Environ Microbiol. 2021 May 11;87(11). doi: 10.1128/AEM.00031-21.
5
Metabolic engineering of Escherichia coli for efficient production of L-alanyl-L-glutamine.
Microb Cell Fact. 2020 Jun 11;19(1):129. doi: 10.1186/s12934-020-01369-2.
7
Peptide Bond Synthesis by a Mechanism Involving an Enzymatic Reaction and a Subsequent Chemical Reaction.
J Biol Chem. 2016 Jan 22;291(4):1735-1750. doi: 10.1074/jbc.M115.700989. Epub 2015 Nov 19.
8
Structure of RizA, an L-amino-acid ligase from Bacillus subtilis.
Acta Crystallogr F Struct Biol Commun. 2015 Sep;71(Pt 9):1125-30. doi: 10.1107/S2053230X15012698. Epub 2015 Aug 25.
9
Development of bio-based fine chemical production through synthetic bioengineering.
Microb Cell Fact. 2014 Dec 14;13:173. doi: 10.1186/s12934-014-0173-5.
10
L-amino acid ligase from Pseudomonas syringae producing tabtoxin can be used for enzymatic synthesis of various functional peptides.
Appl Environ Microbiol. 2013 Aug;79(16):5023-9. doi: 10.1128/AEM.01003-13. Epub 2013 Jun 14.

本文引用的文献

1
Production and purification of bacilysin.
Biochem J. 1965 Nov;97(2):573-8. doi: 10.1042/bj0970573.
3
ywfE in Bacillus subtilis codes for a novel enzyme, L-amino acid ligase.
J Bacteriol. 2005 Aug;187(15):5195-202. doi: 10.1128/JB.187.15.5195-5202.2005.
4
bac genes for recombinant bacilysin and anticapsin production in Bacillus host strains.
Arch Microbiol. 2005 Feb;183(2):71-9. doi: 10.1007/s00203-004-0743-8. Epub 2004 Dec 18.
5
A novel and efficient enzymatic method for the production of peptides from unprotected starting materials.
J Biotechnol. 2005 Jan 26;115(2):211-20. doi: 10.1016/j.jbiotec.2004.07.017.
7
Carbon-source-dependent nitrogen regulation in Escherichia coli is mediated through glutamine-dependent GlnB signalling.
Microbiology (Reading). 2003 Aug;149(Pt 8):2163-2172. doi: 10.1099/mic.0.26449-0.
9
Aminopeptidases A, B, and N and dipeptidase D are the four cysteinylglycinases of Escherichia coli K-12.
J Bacteriol. 2001 Feb;183(4):1489-90. doi: 10.1128/JB.183.4.1489-1490.2001.
10
Structural basis for recognition of dipeptides by peptide transporters.
Arch Biochem Biophys. 2000 Dec 1;384(1):9-23. doi: 10.1006/abbi.2000.2084.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验