Suppr超能文献

一个涉及Foxn4、Mash1和delta样4/Notch1的调控网络从一个共同的祖细胞库中产生V2a和V2b脊髓中间神经元。

A regulatory network involving Foxn4, Mash1 and delta-like 4/Notch1 generates V2a and V2b spinal interneurons from a common progenitor pool.

作者信息

Del Barrio Marta G, Taveira-Marques Raquel, Muroyama Yuko, Yuk Dong-In, Li Shengguo, Wines-Samuelson Mary, Shen Jie, Smith Hazel K, Xiang Mengqing, Rowitch David, Richardson William D

机构信息

Wolfson Institute for Biomedical Research and Department of Biology, University College London, Gower Street, London WC1E 6BT, UK.

出版信息

Development. 2007 Oct;134(19):3427-36. doi: 10.1242/dev.005868. Epub 2007 Aug 29.

Abstract

In the developing central nervous system, cellular diversity depends in part on organising signals that establish regionally restricted progenitor domains, each of which produces distinct types of differentiated neurons. However, the mechanisms of neuronal subtype specification within each progenitor domain remain poorly understood. The p2 progenitor domain in the ventral spinal cord gives rise to two interneuron (IN) subtypes, V2a and V2b, which integrate into local neuronal networks that control motor activity and locomotion. Foxn4, a forkhead transcription factor, is expressed in the common progenitors of V2a and V2b INs and is required directly for V2b but not for V2a development. We show here in experiments conducted using mouse and chick that Foxn4 induces expression of delta-like 4 (Dll4) and Mash1 (Ascl1). Dll4 then signals through Notch1 to subdivide the p2 progenitor pool. Foxn4, Mash1 and activated Notch1 trigger the genetic cascade leading to V2b INs, whereas the complementary set of progenitors, without active Notch1, generates V2a INs. Thus, Foxn4 plays a dual role in V2 IN development: (1) by initiating Notch-Delta signalling, it introduces the asymmetry required for development of V2a and V2b INs from their common progenitors; (2) it simultaneously activates the V2b genetic programme.

摘要

在发育中的中枢神经系统中,细胞多样性部分取决于组织信号,这些信号建立了区域受限的祖细胞结构域,每个结构域产生不同类型的分化神经元。然而,每个祖细胞结构域内神经元亚型特化的机制仍知之甚少。脊髓腹侧的p2祖细胞结构域产生两种中间神经元(IN)亚型,即V2a和V2b,它们整合到控制运动活动和运动的局部神经元网络中。叉头转录因子Foxn4在V2a和V2b中间神经元的共同祖细胞中表达,是V2b而非V2a发育直接所需的。我们在此使用小鼠和鸡进行的实验中表明,Foxn4诱导delta样4(Dll4)和Mash1(Ascl1)的表达。然后,Dll4通过Notch1发出信号,将p2祖细胞池细分。Foxn4、Mash1和激活的Notch1触发导致V2b中间神经元的遗传级联反应,而没有活跃Notch1的互补祖细胞集则产生V2a中间神经元。因此,Foxn4在V2中间神经元发育中起双重作用:(1)通过启动Notch-Delta信号传导,它引入了从其共同祖细胞发育V2a和V2b中间神经元所需的不对称性;(2)它同时激活V2b遗传程序。

相似文献

3
Foxn4 acts synergistically with Mash1 to specify subtype identity of V2 interneurons in the spinal cord.
Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10688-93. doi: 10.1073/pnas.0504799102. Epub 2005 Jul 14.
4
Genetic dissection of Gata2 selective functions during specification of V2 interneurons in the developing spinal cord.
Dev Neurobiol. 2015 Jul;75(7):721-37. doi: 10.1002/dneu.22244. Epub 2014 Nov 15.
8
Forkhead box N4 (Foxn4) activates Dll4-Notch signaling to suppress photoreceptor cell fates of early retinal progenitors.
Proc Natl Acad Sci U S A. 2012 Feb 28;109(9):E553-62. doi: 10.1073/pnas.1115767109. Epub 2012 Feb 8.
10
Generation of v2a interneurons from mouse embryonic stem cells.
Stem Cells Dev. 2014 Aug 1;23(15):1765-76. doi: 10.1089/scd.2013.0628. Epub 2014 Apr 25.

引用本文的文献

1
Cell fate acquisition and reprogramming by the proneural transcription factor ASCL1.
Open Biol. 2025 Jun;15(6):250018. doi: 10.1098/rsob.250018. Epub 2025 Jun 18.
2
Arid3c identifies an uncharacterized subpopulation of V2 interneurons during embryonic spinal cord development.
Front Cell Neurosci. 2024 Oct 16;18:1466056. doi: 10.3389/fncel.2024.1466056. eCollection 2024.
3
Lhx4 surpasses its paralog Lhx3 in promoting the differentiation of spinal V2a interneurons.
Cell Mol Life Sci. 2024 Jul 6;81(1):286. doi: 10.1007/s00018-024-05316-x.
5
Neurons gating behavior-developmental, molecular and functional features of neurons in the Substantia Nigra pars reticulata.
Front Neurosci. 2022 Sep 6;16:976209. doi: 10.3389/fnins.2022.976209. eCollection 2022.
6
Notch signaling determines cell-fate specification of the two main types of vomeronasal neurons of rodents.
Development. 2022 Jul 1;149(13). doi: 10.1242/dev.200448. Epub 2022 Jul 4.
7
Regulation of retinal amacrine cell generation by miR-216b and Foxn3.
Development. 2022 Jan 15;149(2). doi: 10.1242/dev.199484. Epub 2022 Jan 17.
9
Induction of Ventral Spinal V0 Interneurons from Mouse Embryonic Stem Cells.
Stem Cells Dev. 2021 Aug 15;30(16):816-829. doi: 10.1089/scd.2021.0003. Epub 2021 Jul 16.
10
A developmental framework linking neurogenesis and circuit formation in the CNS.
Elife. 2021 May 11;10:e67510. doi: 10.7554/eLife.67510.

本文引用的文献

2
Notch and MAML signaling drives Scl-dependent interneuron diversity in the spinal cord.
Neuron. 2007 Mar 15;53(6):813-27. doi: 10.1016/j.neuron.2007.02.019.
4
Locomotor circuits in the mammalian spinal cord.
Annu Rev Neurosci. 2006;29:279-306. doi: 10.1146/annurev.neuro.29.051605.112910.
6
Ascl1 and Gsh1/2 control inhibitory and excitatory cell fate in spinal sensory interneurons.
Nat Neurosci. 2006 Jun;9(6):770-8. doi: 10.1038/nn1706. Epub 2006 May 21.
8
How do genes regulate simple behaviours? Understanding how different neurons in the vertebrate spinal cord are genetically specified.
Philos Trans R Soc Lond B Biol Sci. 2006 Jan 29;361(1465):45-66. doi: 10.1098/rstb.2005.1778.
10
Notch signalling in vertebrate neural development.
Nat Rev Neurosci. 2006 Feb;7(2):93-102. doi: 10.1038/nrn1847.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验