Daunizeau Jean, Friston Karl J
The Wellcome Deparment of Imaging Neuroscience, Institute of Neurology, UCL, 12 Queen Square, London, UK.
Neuroimage. 2007 Oct 15;38(1):67-81. doi: 10.1016/j.neuroimage.2007.06.034. Epub 2007 Jul 24.
We present a multi-scale generative model for EEG, that entails a minimum number of assumptions about evoked brain responses, namely: (1) bioelectric activity is generated by a set of distributed sources, (2) the dynamics of these sources can be modelled as random fluctuations about a small number of mesostates, (3) mesostates evolve in a temporal structured way and are functionally connected (i.e. influence each other), and (4) the number of mesostates engaged by a cognitive task is small (e.g. between one and a few). A Variational Bayesian learning scheme is described that furnishes the posterior density on the models parameters and its evidence. Since the number of meso-sources specifies the model, the model evidence can be used to compare models and find the optimum number of meso-sources. In addition to estimating the dynamics at each cortical dipole, the mesostate-space model and its inversion provide a description of brain activity at the level of the mesostates (i.e. in terms of the dynamics of meso-sources that are distributed over dipoles). The inclusion of a mesostate level allows one to compute posterior probability maps of each dipole being active (i.e. belonging to an active mesostate). Critically, this model accommodates constraints on the number of meso-sources, while retaining the flexibility of distributed source models in explaining data. In short, it bridges the gap between standard distributed and equivalent current dipole models. Furthermore, because it is explicitly spatiotemporal, the model can embed any stochastic dynamical causal model (e.g. a neural mass model) as a Markov process prior on the mesostate dynamics. The approach is evaluated and compared to standard inverse EEG techniques, using synthetic data and real data. The results demonstrate the added-value of the mesostate-space model and its variational inversion.
我们提出了一种用于脑电图(EEG)的多尺度生成模型,该模型对诱发脑反应的假设最少,具体如下:(1)生物电活动由一组分布式源产生;(2)这些源的动态可以建模为围绕少数中尺度状态的随机波动;(3)中尺度状态以时间结构化的方式演化且功能相连(即相互影响);(4)认知任务涉及的中尺度状态数量较少(例如在一到几个之间)。描述了一种变分贝叶斯学习方案,该方案提供模型参数的后验密度及其证据。由于中尺度源的数量决定了模型,因此模型证据可用于比较模型并找到最佳的中尺度源数量。除了估计每个皮质偶极子处的动态外,中尺度状态空间模型及其反演还提供了中尺度状态层面的脑活动描述(即根据分布在偶极子上的中尺度源的动态)。包含中尺度状态层面使得可以计算每个偶极子处于活动状态(即属于一个活动中尺度状态)的后验概率图。至关重要的是,该模型在容纳中尺度源数量约束的同时,保留了分布式源模型在解释数据方面的灵活性。简而言之,它弥合了标准分布式模型和等效电流偶极子模型之间的差距。此外,由于该模型具有明确的时空性,它可以将任何随机动态因果模型(例如神经质量模型)作为中尺度状态动态的马尔可夫过程先验进行嵌入。使用合成数据和真实数据对该方法进行了评估,并与标准的脑电图逆技术进行了比较。结果证明了中尺度状态空间模型及其变分反演的附加价值。