Jun Sung C, George John S, Plis Sergey M, Ranken Doug M, Schmidt David M, Wood C C
MS-D454, Biological & Quantum Physics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
Phys Med Biol. 2006 May 21;51(10):2395-414. doi: 10.1088/0031-9155/51/10/004. Epub 2006 Apr 26.
Most existing spatiotemporal multi-dipole approaches for MEG/EEG source localization assume that the dipoles are active for the full time range being analysed. If the actual time range of activity of sources is significantly shorter than the time range being analysed, the detectability, localization and time-course determination of such sources may be adversely affected, especially for weak sources. In order to improve detectability and reconstruction of such sources, it is natural to add active time range information (starting time point and ending time point of source activation) for each candidate source as unknown parameters in the analysis. However, this adds additional nonlinear free parameters that could burden the analysis and could be unfeasible for some methods. Recently, we described a spatiotemporal Bayesian inference multi-dipole analysis for the MEG/EEG inverse problem. This approach treated the number of dipoles as a free parameter, produced realistic uncertainty estimates using a Markov chain Monte Carlo numerical sampling of the posterior distribution and included a method to reduce the unwanted effects of local minima. In this paper, our spatiotemporal Bayesian inference multi-dipole analysis is extended to incorporate active time range parameters of starting and stopping time points. The properties of this analysis in comparison to the previous one without active time range parameters are demonstrated through extensive studies using both simulated and empirical MEG data.
大多数现有的用于脑磁图/脑电图源定位的时空多偶极方法都假定偶极在整个分析时间范围内都是活跃的。如果源的实际活动时间范围明显短于所分析的时间范围,那么此类源的可检测性、定位及时间进程确定可能会受到不利影响,尤其是对于弱源。为了提高此类源的可检测性和重建效果,在分析中将每个候选源的活动时间范围信息(源激活的起始时间点和结束时间点)作为未知参数添加进来是很自然的做法。然而,这会增加额外的非线性自由参数,可能会给分析带来负担,并且对某些方法而言可能不可行。最近,我们描述了一种用于脑磁图/脑电图逆问题的时空贝叶斯推理多偶极分析方法。该方法将偶极数量视为自由参数,通过对后验分布进行马尔可夫链蒙特卡罗数值采样产生现实的不确定性估计,并包含一种减少局部最小值不良影响的方法。在本文中,我们将时空贝叶斯推理多偶极分析进行扩展,以纳入起始和停止时间点的活动时间范围参数。通过使用模拟和实测脑磁图数据进行的大量研究,展示了该分析与之前没有活动时间范围参数的分析相比所具有的特性。