Suppr超能文献

碳封存

Carbon sequestration.

作者信息

Lal Rattan

机构信息

Carbon Management and Sequestration Center, The Ohio State University, Columbus, OH 43210, USA.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2008 Feb 27;363(1492):815-30. doi: 10.1098/rstb.2007.2185.

Abstract

Developing technologies to reduce the rate of increase of atmospheric concentration of carbon dioxide (CO2) from annual emissions of 8.6PgCyr-1 from energy, process industry, land-use conversion and soil cultivation is an important issue of the twenty-first century. Of the three options of reducing the global energy use, developing low or no-carbon fuel and sequestering emissions, this manuscript describes processes for carbon (CO2) sequestration and discusses abiotic and biotic technologies. Carbon sequestration implies transfer of atmospheric CO2 into other long-lived global pools including oceanic, pedologic, biotic and geological strata to reduce the net rate of increase in atmospheric CO2. Engineering techniques of CO2 injection in deep ocean, geological strata, old coal mines and oil wells, and saline aquifers along with mineral carbonation of CO2 constitute abiotic techniques. These techniques have a large potential of thousands of Pg, are expensive, have leakage risks and may be available for routine use by 2025 and beyond. In comparison, biotic techniques are natural and cost-effective processes, have numerous ancillary benefits, are immediately applicable but have finite sink capacity. Biotic and abiotic C sequestration options have specific nitches, are complementary, and have potential to mitigate the climate change risks.

摘要

通过技术手段降低能源、加工工业、土地利用变化和土壤耕作每年排放8.6PgC碳所导致的大气二氧化碳(CO₂)浓度增长率,是21世纪的一个重要问题。在减少全球能源使用、开发低碳或无碳燃料以及封存排放这三种选择中,本文描述了碳(CO₂)封存的过程,并讨论了非生物和生物技术。碳封存意味着将大气中的CO₂转移到其他长期存在的全球库中,包括海洋、土壤、生物和地质层,以降低大气CO₂的净增长率。向深海、地质层、旧煤矿和油井以及盐水层注入CO₂的工程技术,以及CO₂的矿物碳酸化,构成了非生物技术。这些技术具有数千Pg的巨大潜力,成本高昂,存在泄漏风险,可能在2025年及以后用于常规应用。相比之下,生物技术是自然且具有成本效益的过程,有许多附带益处,可立即应用,但汇容量有限。生物和非生物碳封存选择具有特定的适用范围,相互补充,有潜力降低气候变化风险。

相似文献

1
Carbon sequestration.
Philos Trans R Soc Lond B Biol Sci. 2008 Feb 27;363(1492):815-30. doi: 10.1098/rstb.2007.2185.
3
Making carbon sequestration a paying proposition.
Naturwissenschaften. 2007 Mar;94(3):170-82. doi: 10.1007/s00114-006-0170-6. Epub 2006 Nov 14.
4
Fighting global warming by greenhouse gas removal: destroying atmospheric nitrous oxide thanks to synergies between two breakthrough technologies.
Environ Sci Pollut Res Int. 2016 Apr;23(7):6119-38. doi: 10.1007/s11356-016-6103-9. Epub 2016 Jan 25.
5
Forests, carbon and global climate.
Philos Trans A Math Phys Eng Sci. 2002 Aug 15;360(1797):1567-91. doi: 10.1098/rsta.2002.1020.
6
Agricultural opportunities to mitigate greenhouse gas emissions.
Environ Pollut. 2007 Nov;150(1):107-24. doi: 10.1016/j.envpol.2007.06.030. Epub 2007 Aug 16.
9
Future carbon balance of China's forests under climate change and increasing CO2.
J Environ Manage. 2007 Nov;85(3):538-62. doi: 10.1016/j.jenvman.2006.04.028. Epub 2006 Dec 21.

引用本文的文献

1
Tracing priming effects in palsa peat carbon dynamics using a stable isotope-assisted metabolomics approach.
Front Mol Biosci. 2025 Aug 22;12:1621357. doi: 10.3389/fmolb.2025.1621357. eCollection 2025.
2
Comprehensive Assessment and Trading Mechanism of Carbon Sink in China's Marine Aquaculture.
Biology (Basel). 2025 Jun 3;14(6):648. doi: 10.3390/biology14060648.
4
Distinct microbiomes underlie divergent responses of methane emissions from diverse wetland soils to oxygen shifts.
ISME Commun. 2025 Apr 14;5(1):ycaf063. doi: 10.1093/ismeco/ycaf063. eCollection 2025 Jan.
5
The role of subsurface geomechanics in the green energy transition.
R Soc Open Sci. 2025 May 7;12(5):241516. doi: 10.1098/rsos.241516. eCollection 2025 May.
6
Dual carbon sequestration with photosynthetic living materials.
Nat Commun. 2025 Apr 23;16(1):3832. doi: 10.1038/s41467-025-58761-y.
7
Mineral Carbonation for Carbon Sequestration: A Case for MCP and MICP.
Int J Mol Sci. 2025 Mar 1;26(5):2230. doi: 10.3390/ijms26052230.
8
Meta-omics reveals role of photosynthesis in microbially induced carbonate precipitation at a CO-rich geyser.
ISME Commun. 2024 Dec 11;4(1):ycae139. doi: 10.1093/ismeco/ycae139. eCollection 2024 Jan.
10
Present trends, sustainable strategies and energy potentials of crop residue management in India: A review.
Heliyon. 2024 Oct 24;10(21):e39815. doi: 10.1016/j.heliyon.2024.e39815. eCollection 2024 Nov 15.

本文引用的文献

2
Observational contrains on the global atmospheric co2 budget.
Science. 1990 Mar 23;247(4949):1431-8. doi: 10.1126/science.247.4949.1431.
3
CLIMATE CHANGE: Variable Carbon Sinks.
Science. 2000 Nov 17;290(5495):1313. doi: 10.1126/science.290.5495.1313.
5
Cellulosic ethanol. Biofuel researchers prepare to reap a new harvest.
Science. 2007 Mar 16;315(5818):1488-91. doi: 10.1126/science.315.5818.1488.
6
Carbon emissions. Report backs more projects to sequester CO2 from coal.
Science. 2007 Mar 16;315(5818):1481. doi: 10.1126/science.315.5818.1481a.
7
Oceans. Climate drives sea change.
Science. 2007 Feb 23;315(5815):1084-5. doi: 10.1126/science.1136495.
8
Science careers. From greener production to carbon trading: sustainable energy careers.
Science. 2007 Feb 9;315(5813):868-9. doi: 10.1126/science.315.5813.868.
9
Preparing to capture carbon.
Science. 2007 Feb 9;315(5813):812-3. doi: 10.1126/science.1137632.
10
Ethanol for a sustainable energy future.
Science. 2007 Feb 9;315(5813):808-10. doi: 10.1126/science.1137013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验