Suppr超能文献

评估生存结局风险预测模型的动态判别性能。

Evaluating Dynamic Discrimination Performance of Risk Prediction Models for Survival Outcomes.

作者信息

Zhang Jing, Ning Jing, Li Ruosha

机构信息

Department of Biostatistics and Data Science, The University of Texas Health Science Center at Houston, 1200 Pressler St, Houston, TX 77030, USA.

Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Houston, TX 77030, USA.

出版信息

Stat Biosci. 2023 Jul;15(2):353-371. doi: 10.1007/s12561-023-09362-0. Epub 2023 Feb 2.

Abstract

Risk prediction models for survival outcomes are widely applied in medical research to predict future risk for the occurrence of the event. In many clinical studies, the biomarker data are measured repeatedly over time. To facilitate timely disease prognosis and decision making, many dynamic prediction models have been developed and generate predictions on a real-time basis. As a dynamic prediction model updates an individual's risk prediction over time based on new measurements, it is often important to examine how well the model performs at different measurement times and prediction times. In this article, we propose a two-dimensional area under curve (AUC) measure for dynamic prediction models and develop associated estimation and inference procedures. The estimation procedures are discussed under two types of biomarker measurement schedules: regular visits and irregular visits. The model parameters are estimated effectively by maximizing a pseudo-partial likelihood function. We apply the proposed method to a renal transplantation study to evaluate the discrimination performance of dynamic prediction models based on longitudinal biomarkers for graft failure.

摘要

生存结局的风险预测模型在医学研究中被广泛应用,以预测事件发生的未来风险。在许多临床研究中,生物标志物数据会随时间重复测量。为便于及时进行疾病预后评估和决策,人们开发了许多动态预测模型,并能实时生成预测结果。由于动态预测模型会根据新的测量数据随时间更新个体的风险预测,因此考察模型在不同测量时间和预测时间的表现通常很重要。在本文中,我们为动态预测模型提出了一种二维曲线下面积(AUC)度量,并开发了相关的估计和推断程序。估计程序在两种生物标志物测量计划下进行讨论:定期访视和不定期访视。通过最大化一个伪偏似然函数有效地估计模型参数。我们将所提出的方法应用于一项肾移植研究,以评估基于纵向生物标志物的动态预测模型对移植失败的区分性能。

相似文献

1
Evaluating Dynamic Discrimination Performance of Risk Prediction Models for Survival Outcomes.
Stat Biosci. 2023 Jul;15(2):353-371. doi: 10.1007/s12561-023-09362-0. Epub 2023 Feb 2.
2
On the time-varying predictive performance of longitudinal biomarkers: Measure and estimation.
Stat Med. 2021 Oct 15;40(23):5065-5077. doi: 10.1002/sim.9111. Epub 2021 Jun 22.
3
Dynamic prediction of time to a clinical event with sparse and irregularly measured longitudinal biomarkers.
Biom J. 2020 Oct;62(6):1371-1393. doi: 10.1002/bimj.201900112. Epub 2020 Mar 20.
4
Random survival forests for dynamic predictions of a time-to-event outcome using a longitudinal biomarker.
BMC Med Res Methodol. 2021 Oct 17;21(1):216. doi: 10.1186/s12874-021-01375-x.
5
A Tutorial on Evaluating the Time-Varying Discrimination Accuracy of Survival Models Used in Dynamic Decision Making.
Med Decis Making. 2018 Nov;38(8):904-916. doi: 10.1177/0272989X18801312. Epub 2018 Oct 14.
7
Estimation and inference of predictive discrimination for survival outcome risk prediction models.
Lifetime Data Anal. 2022 Apr;28(2):219-240. doi: 10.1007/s10985-022-09545-9. Epub 2022 Jan 21.
8
Development and validation of a dynamic outcome prediction model for paracetamol-induced acute liver failure: a cohort study.
Lancet Gastroenterol Hepatol. 2016 Nov;1(3):217-225. doi: 10.1016/S2468-1253(16)30007-3. Epub 2016 Jul 13.
9
Dynamic Prediction of Renal Failure Using Longitudinal Biomarkers in a Cohort Study of Chronic Kidney Disease.
Stat Biosci. 2017 Dec;9(2):357-378. doi: 10.1007/s12561-016-9183-7. Epub 2016 Nov 7.
10
A new approach for interpretability and reliability in clinical risk prediction: Acute coronary syndrome scenario.
Artif Intell Med. 2021 Jul;117:102113. doi: 10.1016/j.artmed.2021.102113. Epub 2021 May 13.

引用本文的文献

本文引用的文献

1
Estimation and inference of predictive discrimination for survival outcome risk prediction models.
Lifetime Data Anal. 2022 Apr;28(2):219-240. doi: 10.1007/s10985-022-09545-9. Epub 2022 Jan 21.
2
On the time-varying predictive performance of longitudinal biomarkers: Measure and estimation.
Stat Med. 2021 Oct 15;40(23):5065-5077. doi: 10.1002/sim.9111. Epub 2021 Jun 22.
3
Chronic Kidney Disease Diagnosis and Management: A Review.
JAMA. 2019 Oct 1;322(13):1294-1304. doi: 10.1001/jama.2019.14745.
4
Dynamic Prediction of Renal Failure Using Longitudinal Biomarkers in a Cohort Study of Chronic Kidney Disease.
Stat Biosci. 2017 Dec;9(2):357-378. doi: 10.1007/s12561-016-9183-7. Epub 2016 Nov 7.
5
Estimating glomerular filtration rate in kidney transplantation: Still searching for the best marker.
World J Nephrol. 2015 Jul 6;4(3):345-53. doi: 10.5527/wjn.v4.i3.345.
6
Non-parametric estimation of a time-dependent predictive accuracy curve.
Biostatistics. 2013 Jan;14(1):42-59. doi: 10.1093/biostatistics/kxs021. Epub 2012 Jun 25.
7
On the C-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data.
Stat Med. 2011 May 10;30(10):1105-17. doi: 10.1002/sim.4154. Epub 2011 Jan 13.
8
A Bayesian semiparametric multivariate joint model for multiple longitudinal outcomes and a time-to-event.
Stat Med. 2011 May 30;30(12):1366-80. doi: 10.1002/sim.4205. Epub 2011 Feb 21.
9
Time-dependent predictive accuracy in the presence of competing risks.
Biometrics. 2010 Dec;66(4):999-1011. doi: 10.1111/j.1541-0420.2009.01375.x.
10
Quantifying the predictive performance of prognostic models for censored survival data with time-dependent covariates.
Biometrics. 2008 Jun;64(2):603-10. doi: 10.1111/j.1541-0420.2007.00889.x. Epub 2007 Aug 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验