Suppr超能文献

使用预后纵向协变量的非参数生存估计

Nonparametric survival estimation using prognostic longitudinal covariates.

作者信息

Murray S, Tsiatis A A

机构信息

Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts 02115, USA.

出版信息

Biometrics. 1996 Mar;52(1):137-51.

PMID:8934589
Abstract

One of the primary problems facing statisticians who work with survival data is the loss of information that occurs with right-censored data. This research considers trying to recover some of this endpoint information through the use of a prognostic covariate which is measured on each individual. We begin by defining a survival estimate which uses time-dependent covariates to more precisely get at the underlying survival curves in the presence of censoring. This estimate has a smaller asymptotic variance than the usual Kaplan-Meier in the presence of censoring and reduces to the Kaplan-Meier (1958, Journal of the American Statistical Association 53, 457-481) in situations where the covariate is not prognostic or no censoring occurs. In addition, this estimate remains consistent when the incorporated covariate contains information about the censoring process as well as survival information. Because the Kaplan-Meier estimate is known to be biased in this situation due to informative censoring, we recommend use of our estimate.

摘要

处理生存数据的统计学家面临的主要问题之一是右删失数据所导致的信息丢失。本研究考虑通过使用在每个个体上测量的预后协变量来尝试恢复部分这种终点信息。我们首先定义一个生存估计量,它使用随时间变化的协变量在存在删失的情况下更精确地得到潜在的生存曲线。在存在删失的情况下,这个估计量的渐近方差比通常的Kaplan-Meier估计量更小,并且在协变量不具有预后性或未发生删失的情况下会简化为Kaplan-Meier估计量(1958年,《美国统计协会杂志》53卷,457 - 481页)。此外,当纳入的协变量包含有关删失过程以及生存信息时,这个估计量仍然是一致的。由于已知在这种情况下由于信息删失Kaplan-Meier估计量存在偏差,我们建议使用我们的估计量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验