Hinsch H, Wilhelm J, Frey E
Arnold Sommerfeld Center for Theoretical Physics and Center of NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 München, Germany.
Eur Phys J E Soft Matter. 2007 Sep;24(1):35-46. doi: 10.1140/epje/i2007-10208-2. Epub 2007 Sep 3.
We develop an analytical and quantitative theory of the tube model concept for entangled networks of semiflexible polymers. The absolute value of the tube diameter L perpendicular is derived as a function of the polymers' persistence length lp and mesh size xi of the network. To leading order, we find L perpendicular = 0.31xi 6/5 lp (-1/5) , which is consistent with known asymptotic scaling laws. Additionally, our theory provides finite-length corrections that can account for effects of polydispersity. We support our analytical studies by extensive computer simulations. These allow to verify assumptions essential to our theoretical description and provide an excellent agreement with the analytically calculated tube diameter. Furthermore, we present simulation data for the distribution function of tube widths in the network.
我们针对半柔性聚合物缠结网络的管模型概念,发展了一种解析和定量理论。垂直管直径L的绝对值被推导为聚合物的持久长度lp和网络网眼尺寸xi的函数。在主导阶次下,我们发现垂直管直径L = 0.31xi^(6/5)lp^(-1/5),这与已知的渐近标度律一致。此外,我们的理论提供了有限长度修正,可解释多分散性的影响。我们通过广泛的计算机模拟来支持我们的解析研究。这些模拟能够验证对我们理论描述至关重要的假设,并与解析计算的管直径达成极好的一致性。此外,我们还给出了网络中管宽度分布函数的模拟数据。