Suppr超能文献

细胞骨架聚合物网络:交联剂的分子结构决定宏观性质。

Cytoskeletal polymer networks: the molecular structure of cross-linkers determines macroscopic properties.

作者信息

Wagner B, Tharmann R, Haase I, Fischer M, Bausch A R

机构信息

Lehrstühle für Biophysik E22 and Organische Chemie und Biochemie, Technische Universität München, 80333 Munich, Germany.

出版信息

Proc Natl Acad Sci U S A. 2006 Sep 19;103(38):13974-8. doi: 10.1073/pnas.0510190103. Epub 2006 Sep 8.

Abstract

In living cells the mechanical properties of the actin cytoskeleton are defined by the local activation of different actin cross-linking proteins. These proteins consist of actin-binding domains that are separated and geometrically organized by different numbers of rod domains. The detailed molecular structure of the cross-linking molecules determines the structural and mechanical properties of actin networks in vivo. In this study, we systematically investigate the impact of the length of the spacing unit between two actin-binding domains on in vitro actin networks. Such synthetic cross-linkers reveal that the shorter the constructs are, the greater the elastic modulus changes in the linear response regime. Because the same binding domains are used in all constructs, only the differences in the number of rod domains determine their mechanical effectiveness. Structural rearrangements of the networks show that bundling propensity is highest for the shortest construct. The nonlinear mechanical response is affected by the molecular structure of the cross-linker molecules, and the observed critical strains and fracture stress increase proportional to the length of the spacing unit.

摘要

在活细胞中,肌动蛋白细胞骨架的力学特性由不同肌动蛋白交联蛋白的局部激活所定义。这些蛋白质由肌动蛋白结合结构域组成,这些结构域由不同数量的杆状结构域分隔并按几何方式组织。交联分子的详细分子结构决定了体内肌动蛋白网络的结构和力学特性。在本研究中,我们系统地研究了两个肌动蛋白结合结构域之间间隔单元长度对体外肌动蛋白网络的影响。这种合成交联剂表明,构建体越短,线性响应范围内的弹性模量变化就越大。由于所有构建体都使用相同的结合结构域,只有杆状结构域数量的差异决定了它们的力学有效性。网络的结构重排表明,最短构建体的成束倾向最高。非线性力学响应受交联剂分子的分子结构影响,观察到的临界应变和断裂应力与间隔单元的长度成正比增加。

相似文献

1
Cytoskeletal polymer networks: the molecular structure of cross-linkers determines macroscopic properties.
Proc Natl Acad Sci U S A. 2006 Sep 19;103(38):13974-8. doi: 10.1073/pnas.0510190103. Epub 2006 Sep 8.
2
Effective-medium approach for stiff polymer networks with flexible cross-links.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Jun;79(6 Pt 1):061914. doi: 10.1103/PhysRevE.79.061914. Epub 2009 Jun 11.
3
Reversible stress softening of actin networks.
Nature. 2007 Jan 18;445(7125):295-8. doi: 10.1038/nature05459.
4
Strain hardening, avalanches, and strain softening in dense cross-linked actin networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 May;77(5 Pt 1):051913. doi: 10.1103/PhysRevE.77.051913. Epub 2008 May 16.
5
Prokaryotic origin of the actin cytoskeleton.
Nature. 2001 Sep 6;413(6851):39-44. doi: 10.1038/35092500.
6
Cross-linking molecules modify composite actin networks independently.
Phys Rev Lett. 2008 Sep 12;101(11):118102. doi: 10.1103/PhysRevLett.101.118102. Epub 2008 Sep 10.
7
Rheology of two-dimensional F-actin networks associated with a lipid interface.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jan;77(1 Pt 1):011909. doi: 10.1103/PhysRevE.77.011909. Epub 2008 Jan 17.
8
Micro- and macrorheological properties of isotropically cross-linked actin networks.
Biophys J. 2008 Jan 15;94(2):688-93. doi: 10.1529/biophysj.107.112417. Epub 2007 Sep 14.
10
Micro- and macrorheological properties of actin networks effectively cross-linked by depletion forces.
Biophys J. 2006 Apr 1;90(7):2622-7. doi: 10.1529/biophysj.105.070458. Epub 2006 Jan 13.

引用本文的文献

1
Targeted elimination of mesenchymal-like cancer cells through cyclic stretch activation of Piezo1 channels: the physical aspects.
Biophys Rev. 2025 Mar 19;17(3):847-865. doi: 10.1007/s12551-025-01304-y. eCollection 2025 Jun.
2
Next-Generation Protein-Ligand Interaction Networks: APEX as a Powerful Technology.
Proteomes. 2025 Jun 23;13(3):26. doi: 10.3390/proteomes13030026.
5
Highly flexible PEG-LifeAct constructs act as tunable biomimetic actin crosslinkers.
Soft Matter. 2024 Jan 31;20(5):971-977. doi: 10.1039/d3sm01341c.
6
Systematic altering of semiflexible DNA-based polymer networks tunable crosslinking.
Nanoscale. 2023 Apr 27;15(16):7374-7383. doi: 10.1039/d2nr05615a.
7
Photocurable Thiol-yne Alginate Hydrogels for Regenerative Medicine Purposes.
Polymers (Basel). 2022 Nov 3;14(21):4709. doi: 10.3390/polym14214709.
8
A generalized Flory-Stockmayer kinetic theory of connectivity percolation and rigidity percolation of cytoskeletal networks.
PLoS Comput Biol. 2022 May 9;18(5):e1010105. doi: 10.1371/journal.pcbi.1010105. eCollection 2022 May.
9
The microtubule cytoskeleton in cardiac mechanics and heart failure.
Nat Rev Cardiol. 2022 Jun;19(6):364-378. doi: 10.1038/s41569-022-00692-y. Epub 2022 Apr 19.
10
Simulations of dynamically cross-linked actin networks: Morphology, rheology, and hydrodynamic interactions.
PLoS Comput Biol. 2021 Dec 6;17(12):e1009240. doi: 10.1371/journal.pcbi.1009240. eCollection 2021 Dec.

本文引用的文献

1
Actin-binding proteins sensitively mediate F-actin bundle stiffness.
Nat Mater. 2006 Sep;5(9):748-53. doi: 10.1038/nmat1718. Epub 2006 Aug 20.
2
Stiff polymers, foams, and fiber networks.
Phys Rev Lett. 2006 Jan 13;96(1):017802. doi: 10.1103/PhysRevLett.96.017802. Epub 2006 Jan 9.
3
New actin-binding proteins from Dictyostelium discoideum.
EMBO J. 1984 Sep;3(9):2095-100. doi: 10.1002/j.1460-2075.1984.tb02096.x.
4
Prestressed F-actin networks cross-linked by hinged filamins replicate mechanical properties of cells.
Proc Natl Acad Sci U S A. 2006 Feb 7;103(6):1762-7. doi: 10.1073/pnas.0504777103. Epub 2006 Jan 30.
5
Micro- and macrorheological properties of actin networks effectively cross-linked by depletion forces.
Biophys J. 2006 Apr 1;90(7):2622-7. doi: 10.1529/biophysj.105.070458. Epub 2006 Jan 13.
6
Structural polymorphism of the cytoskeleton: a model of linker-assisted filament aggregation.
Proc Natl Acad Sci U S A. 2005 Mar 8;102(10):3673-8. doi: 10.1073/pnas.0404140102. Epub 2005 Feb 24.
7
Molecular structure of the rod domain of dictyostelium filamin.
J Mol Biol. 2004 Oct 1;342(5):1637-46. doi: 10.1016/j.jmb.2004.08.017.
8
Relating microstructure to rheology of a bundled and cross-linked F-actin network in vitro.
Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9636-41. doi: 10.1073/pnas.0308733101. Epub 2004 Jun 21.
9
Elastic behavior of cross-linked and bundled actin networks.
Science. 2004 May 28;304(5675):1301-5. doi: 10.1126/science.1095087.
10
Distinct regimes of elastic response and deformation modes of cross-linked cytoskeletal and semiflexible polymer networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Dec;68(6 Pt 1):061907. doi: 10.1103/PhysRevE.68.061907. Epub 2003 Dec 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验