Suppr超能文献

多胺对于大肠杆菌谷氨酸脱羧酶依赖性酸抗性系统的诱导至关重要。

Polyamines are critical for the induction of the glutamate decarboxylase-dependent acid resistance system in Escherichia coli.

机构信息

Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892.

Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892.

出版信息

J Biol Chem. 2013 Nov 22;288(47):33559-33570. doi: 10.1074/jbc.M113.510552. Epub 2013 Oct 4.

Abstract

As part of our studies on the biological functions of polyamines, we have used a mutant of Escherichia coli that lacks all the genes for polyamine biosynthesis for a global transcriptional analysis on the effect of added polyamines. The most striking early response to the polyamine addition is the increased expression of the genes for the glutamate-dependent acid resistance system (GDAR) that is important for the survival of the bacteria when passing through the acid environment of the stomach. Not only were the two genes for glutamate decarboxylases (gadA and gadB) and the gene for glutamate-γ-aminobutyrate antiporter (gadC) induced by the polyamine addition, but the various genes involved in the regulation of this system were also induced. We confirmed the importance of polyamines for the induction of the GDAR system by direct measurement of glutamate decarboxylase activity and acid survival. The effect of deletions of the regulatory genes on the GDAR system and the effects of overproduction of two of these genes were also studied. Strikingly, overproduction of the alternative σ factor rpoS and of the regulatory gene gadE resulted in very high levels of glutamate decarboxylase and almost complete protection against acid stress even in the absence of any polyamines. Thus, these data show that a major function of polyamines in E. coli is protection against acid stress by increasing the synthesis of glutamate decarboxylase, presumably by increasing the levels of the rpoS and gadE regulators.

摘要

作为我们对多胺生物功能研究的一部分,我们使用了一种缺乏所有多胺生物合成基因的大肠杆菌突变体,进行了添加多胺对其全转录组影响的分析。添加多胺后最显著的早期反应是谷氨酸依赖型酸抗性系统(GDAR)基因表达增加,这对于细菌通过胃酸环境的生存至关重要。不仅谷氨酸脱羧酶(gadA 和 gadB)的两个基因和谷氨酸-γ-氨基丁酸转运体(gadC)的基因被多胺添加诱导,而且该系统的各种调节基因也被诱导。我们通过直接测量谷氨酸脱羧酶活性和酸存活来证实多胺对 GDAR 系统诱导的重要性。还研究了调节基因缺失对 GDAR 系统的影响以及这些基因中两个基因过表达的影响。引人注目的是,替代σ因子 rpoS 和调节基因 gadE 的过表达导致谷氨酸脱羧酶水平非常高,即使在没有任何多胺的情况下,也几乎完全免受酸应激。因此,这些数据表明,多胺在大肠杆菌中的主要功能是通过增加谷氨酸脱羧酶的合成来保护细菌免受酸应激,推测是通过增加 rpoS 和 gadE 调节剂的水平。

相似文献

3
Control of acid resistance in Escherichia coli.大肠杆菌中耐酸性的调控
J Bacteriol. 1999 Jun;181(11):3525-35. doi: 10.1128/JB.181.11.3525-3535.1999.

引用本文的文献

3
Androgen receptor coordinates muscle metabolic and contractile functions.雄激素受体协调肌肉代谢和收缩功能。
J Cachexia Sarcopenia Muscle. 2023 Aug;14(4):1707-1720. doi: 10.1002/jcsm.13251. Epub 2023 May 20.
8
Metabolic Remodeling during Nitrogen Fixation in Zymomonas mobilis.运动发酵单胞菌固氮过程中的代谢重塑
mSystems. 2021 Dec 21;6(6):e0098721. doi: 10.1128/mSystems.00987-21. Epub 2021 Nov 16.

本文引用的文献

1
Mechanisms of acid resistance in Escherichia coli.大肠杆菌耐酸机制。
Annu Rev Microbiol. 2013;67:65-81. doi: 10.1146/annurev-micro-092412-155708. Epub 2013 May 20.
5
Current status of the polyamine research field.多胺研究领域的现状。
Methods Mol Biol. 2011;720:3-35. doi: 10.1007/978-1-61779-034-8_1.
9
Modulation of cellular function by polyamines.多胺对细胞功能的调节。
Int J Biochem Cell Biol. 2010 Jan;42(1):39-51. doi: 10.1016/j.biocel.2009.07.009. Epub 2009 Jul 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验