Suppr超能文献

酿酒酵母中RAD52基因家族对紫外线损伤DNA复制后修复的需求。

Requirement of RAD52 group genes for postreplication repair of UV-damaged DNA in Saccharomyces cerevisiae.

作者信息

Gangavarapu Venkateswarlu, Prakash Satya, Prakash Louise

机构信息

University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1061, USA.

出版信息

Mol Cell Biol. 2007 Nov;27(21):7758-64. doi: 10.1128/MCB.01331-07. Epub 2007 Sep 4.

Abstract

In Saccharomyces cerevisiae, replication through DNA lesions is promoted by Rad6-Rad18-dependent processes that include translesion synthesis by DNA polymerases eta and zeta and a Rad5-Mms2-Ubc13-controlled postreplicational repair (PRR) pathway which repairs the discontinuities in the newly synthesized DNA that form opposite from DNA lesions on the template strand. Here, we examine the contributions of the RAD51, RAD52, and RAD54 genes and of the RAD50 and XRS2 genes to the PRR of UV-damaged DNA. We find that deletions of the RAD51, RAD52, and RAD54 genes impair the efficiency of PRR and that almost all of the PRR is inhibited in the absence of both Rad5 and Rad52. We suggest a role for the Rad5 pathway when the lesion is located on the leading strand template and for the Rad52 pathway when the lesion is located on the lagging strand template. We surmise that both of these pathways operate in a nonrecombinational manner, Rad5 by mediating replication fork regression and template switching via its DNA helicase activity and Rad52 via a synthesis-dependent strand annealing mode. In addition, our results suggest a role for the Rad50 and Xrs2 proteins and thereby for the MRX complex in promoting PRR via both the Rad5 and Rad52 pathways.

摘要

在酿酒酵母中,通过DNA损伤的复制由Rad6-Rad18依赖性过程促进,这些过程包括DNA聚合酶η和ζ的跨损伤合成以及由Rad5-Mms2-Ubc13控制的复制后修复(PRR)途径,该途径修复新合成DNA中与模板链上DNA损伤相对形成的间断。在此,我们研究了RAD51、RAD52和RAD54基因以及RAD50和XRS2基因对紫外线损伤DNA的PRR的贡献。我们发现,RAD51、RAD52和RAD54基因的缺失会损害PRR的效率,并且在没有Rad5和Rad52的情况下,几乎所有的PRR都会被抑制。我们提出,当损伤位于前导链模板上时,Rad5途径起作用;当损伤位于滞后链模板上时,Rad52途径起作用。我们推测这两种途径均以非重组方式运作,Rad5通过其DNA解旋酶活性介导复制叉回归和模板切换,而Rad52则通过合成依赖性链退火模式运作。此外,我们的结果表明Rad50和Xrs2蛋白以及MRX复合物在通过Rad5和Rad52途径促进PRR中发挥作用。

相似文献

1
Requirement of RAD52 group genes for postreplication repair of UV-damaged DNA in Saccharomyces cerevisiae.
Mol Cell Biol. 2007 Nov;27(21):7758-64. doi: 10.1128/MCB.01331-07. Epub 2007 Sep 4.
3
Requirement of RAD5 and MMS2 for postreplication repair of UV-damaged DNA in Saccharomyces cerevisiae.
Mol Cell Biol. 2002 Apr;22(7):2419-26. doi: 10.1128/MCB.22.7.2419-2426.2002.
6
RAD6-RAD18-RAD5-pathway-dependent tolerance to chronic low-dose ultraviolet light.
Nature. 2009 Jan 29;457(7229):612-5. doi: 10.1038/nature07580. Epub 2008 Dec 14.
8
Requirement of replication checkpoint protein kinases Mec1/Rad53 for postreplication repair in yeast.
mBio. 2011 May 17;2(3):e00079-11. doi: 10.1128/mBio.00079-11. Print 2011.
9
MutSα deficiency increases tolerance to DNA damage in yeast lacking postreplication repair.
DNA Repair (Amst). 2020 Jul-Aug;91-92:102870. doi: 10.1016/j.dnarep.2020.102870. Epub 2020 May 21.
10
The Rad5 helicase activity is dispensable for error-free DNA post-replication repair.
DNA Repair (Amst). 2014 Apr;16:74-83. doi: 10.1016/j.dnarep.2014.02.016. Epub 2014 Mar 13.

引用本文的文献

2
Post-replicative lesion processing limits DNA damage-induced mutagenesis.
Nucleic Acids Res. 2025 Mar 20;53(6). doi: 10.1093/nar/gkaf198.
3
5
Mechanisms of direct replication restart at stressed replisomes.
DNA Repair (Amst). 2020 Nov;95:102947. doi: 10.1016/j.dnarep.2020.102947. Epub 2020 Aug 16.
7
iDamage: a method to integrate modified DNA into the yeast genome.
Nucleic Acids Res. 2019 Nov 18;47(20):e124. doi: 10.1093/nar/gkz723.
8
The DNA damage response acts as a safeguard against harmful DNA-RNA hybrids of different origins.
EMBO Rep. 2019 Sep;20(9):e47250. doi: 10.15252/embr.201847250. Epub 2019 Jul 24.
9
Homologous Recombination: To Fork and Beyond.
Genes (Basel). 2018 Dec 4;9(12):603. doi: 10.3390/genes9120603.
10
The Emerging Role of Cohesin in the DNA Damage Response.
Genes (Basel). 2018 Nov 28;9(12):581. doi: 10.3390/genes9120581.

本文引用的文献

2
Mechanism of homologous recombination: mediators and helicases take on regulatory functions.
Nat Rev Mol Cell Biol. 2006 Oct;7(10):739-50. doi: 10.1038/nrm2008. Epub 2006 Aug 23.
4
Visualization of Rad54, a chromatin remodeling protein, translocating on single DNA molecules.
Mol Cell. 2006 Jul 7;23(1):143-8. doi: 10.1016/j.molcel.2006.05.009.
6
The error-free component of the RAD6/RAD18 DNA damage tolerance pathway of budding yeast employs sister-strand recombination.
Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):15954-9. doi: 10.1073/pnas.0504586102. Epub 2005 Oct 24.
7
Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p.
Mol Cell. 2005 Jul 1;19(1):123-33. doi: 10.1016/j.molcel.2005.06.001.
8
Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function.
Annu Rev Biochem. 2005;74:317-53. doi: 10.1146/annurev.biochem.74.082803.133250.
9
SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase.
Nature. 2005 Jul 21;436(7049):428-33. doi: 10.1038/nature03665. Epub 2005 Jun 1.
10
Recombination proteins in yeast.
Annu Rev Genet. 2004;38:233-71. doi: 10.1146/annurev.genet.38.072902.091500.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验