Suppr超能文献

分析平衡和动力学测量,以确定蛋白质与螺旋DNA之间位点特异性复合物稳定性和特异性的热力学起源及形成机制。

Analysis of equilibrium and kinetic measurements to determine thermodynamic origins of stability and specificity and mechanism of formation of site-specific complexes between proteins and helical DNA.

作者信息

Record M T, Ha J H, Fisher M A

出版信息

Methods Enzymol. 1991;208:291-343. doi: 10.1016/0076-6879(91)08018-d.

Abstract

The concentration and nature of the electrolyte are key factors determining (1) the equilibrium extent of binding of oligocations or proteins to DNA, (2) the distribution of bound protein between specific and nonspecific sites, and (3) the kinetics of association and dissociation of both specific and nonspecific complexes. Salt concentration may therefore be used to great advantage to probe the thermodynamic basis of stability and specificity of protein-DNA complexes, and the mechanisms of association and dissociation. Cation concentration serves as a thermodynamic probe of the contributions to stability and specificity from neutralization of DNA phosphate charges and/or reduction in phosphate charge density. Cation concentration also serves as a mechanistic probe of the kinetically significant steps in association and dissociation that involve cation uptake. In general, effects of electrolyte concentration on equilibrium constants (quantified by SKobs) and rate constants (quantified by Skobs) are primarily cation effects that result from the cation-exchange character of the interactions of proteins and oligocations with polyanionic DNA. The competitive effects of Mg2+ or polyamines on the equilibria and kinetics of protein-DNA interactions are interpretable in the context of the cation-exchange model. The nature of the anion often has a major effect on the magnitude of the equilibrium constant (Kobs) and rate constant (kobs) of protein-DNA interactions, but a minor effect on SKobs and Skobs, which are dominated by the cation stoichiometry. The order of effects of different anions generally follows the Hofmeister series and presumably reflects the relative extent of preferential accumulation or exclusion of these anions from the relevant surface regions of DNA-binding proteins. The question of which anion is most inert (i.e., neither accumulated nor excluded from the relevant regions of these proteins) remains unanswered. The characteristic effects of temperature on equilibrium constants and rate constants for protein-DNA interactions also serve as diagnostic probes of the thermodynamic origins of stability and specificity and of the mechanism of the interaction, since large changes in thermodynamic and activation heat capacities accompany processes with large changes in the amount of water-accessible nonpolar surface area.(ABSTRACT TRUNCATED AT 400 WORDS)

摘要

电解质的浓度和性质是决定以下几点的关键因素

(1)寡聚阳离子或蛋白质与DNA结合的平衡程度;(2)结合蛋白在特异性和非特异性位点之间的分布;(3)特异性和非特异性复合物的缔合和解离动力学。因此,盐浓度可被充分利用来探究蛋白质-DNA复合物稳定性和特异性的热力学基础,以及缔合和解离机制。阳离子浓度可作为一种热力学探针,用于探究DNA磷酸电荷中和和/或磷酸电荷密度降低对稳定性和特异性的贡献。阳离子浓度还可作为一种机制探针,用于探究涉及阳离子摄取的缔合和解离过程中具有动力学意义的步骤。一般来说,电解质浓度对平衡常数(由SKobs量化)和速率常数(由Skobs量化)的影响主要是阳离子效应,这是由蛋白质和寡聚阳离子与聚阴离子DNA相互作用的阳离子交换特性导致的。Mg2+或多胺对蛋白质-DNA相互作用平衡和动力学的竞争效应可在阳离子交换模型的背景下进行解释。阴离子的性质通常对蛋白质-DNA相互作用的平衡常数(Kobs)和速率常数(kobs)大小有重大影响,但对SKobs和Skobs影响较小,后者主要由阳离子化学计量决定。不同阴离子的影响顺序通常遵循霍夫迈斯特序列,大概反映了这些阴离子从DNA结合蛋白相关表面区域优先积累或排斥的相对程度。哪种阴离子最惰性(即既不积累也不被这些蛋白的相关区域排斥)的问题仍未得到解答。温度对蛋白质-DNA相互作用平衡常数和速率常数的特征性影响也可作为稳定性和特异性的热力学起源以及相互作用机制的诊断探针,因为热力学和活化热容量的大幅变化伴随着可接近水的非极性表面积大幅变化的过程。(摘要截断于400字)

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验