Suppr超能文献

体外单噬菌体λ DNA 弹射的实时观察

Real-time observations of single bacteriophage lambda DNA ejections in vitro.

作者信息

Grayson Paul, Han Lin, Winther Tabita, Phillips Rob

机构信息

Department of Physics, California Institute of Technology, Pasadena, CA 91125, USA.

出版信息

Proc Natl Acad Sci U S A. 2007 Sep 11;104(37):14652-7. doi: 10.1073/pnas.0703274104. Epub 2007 Sep 5.

Abstract

The physical, chemical, and structural features of bacteriophage genome release have been the subject of much recent attention. Many theoretical and experimental studies have centered on the internal forces driving the ejection process. Recently, Mangenot et al. [Mangenot S, Hochrein M, Rädler J, Letellier L (2005) Curr Biol 15:430-435.] reported fluorescence microscopy of phage T5 ejections, which proceeded stepwise between DNA nicks, reaching a translocation speed of 75 kbp/s or higher. It is still unknown how high the speed actually is. This paper reports real-time measurements of ejection from phage lambda, revealing how the speed depends on key physical parameters such as genome length and ionic state of the buffer. Except for a pause before DNA is finally released, the entire 48.5-kbp genome is translocated in approximately 1.5 s without interruption, reaching a speed of 60 kbp/s. The process gives insights particularly into the effects of two parameters: a shorter genome length results in lower speed but a shorter total time, and the presence of divalent magnesium ions (replacing sodium) reduces the pressure, increasing ejection time to 8-11 s. Pressure caused by DNA-DNA interactions within the head affects the initiation of ejection, but the close packing is also the dominant source of friction: more tightly packed phages initiate ejection earlier, but with a lower initial speed. The details of ejection revealed in this study are probably generic features of DNA translocation in bacteriophages and have implications for the dynamics of DNA in other biological systems.

摘要

噬菌体基因组释放的物理、化学和结构特征是近期备受关注的课题。许多理论和实验研究都聚焦于驱动噬菌体基因组释放过程的内力。最近,曼热诺等人[曼热诺 S,霍赫莱茵 M,勒德勒 J,勒泰利耶 L(2005年)《当代生物学》15:430 - 435]报道了噬菌体T5释放过程的荧光显微镜观察结果,该过程在DNA切口之间逐步进行,转位速度达到75千碱基对/秒或更高。实际速度究竟有多高仍不清楚。本文报道了噬菌体λ释放过程的实时测量结果,揭示了速度如何依赖于关键物理参数,如基因组长度和缓冲液的离子状态。除了在DNA最终释放前有一个停顿外,整个48.5千碱基对的基因组在大约1.5秒内不间断地完成转位,速度达到60千碱基对/秒。该过程特别揭示了两个参数的影响:较短的基因组长度导致速度降低,但总时间缩短;二价镁离子(取代钠离子)的存在会降低压力,使释放时间增加到8 - 11秒。头部内DNA - DNA相互作用产生的压力影响释放的起始,但紧密堆积也是摩擦的主要来源:堆积更紧密的噬菌体更早开始释放,但初始速度较低。本研究中揭示的释放细节可能是噬菌体中DNA转位的普遍特征,并且对其他生物系统中DNA的动力学有影响。

相似文献

1
Real-time observations of single bacteriophage lambda DNA ejections in vitro.
Proc Natl Acad Sci U S A. 2007 Sep 11;104(37):14652-7. doi: 10.1073/pnas.0703274104. Epub 2007 Sep 5.
2
A single-molecule Hershey-Chase experiment.
Curr Biol. 2012 Jul 24;22(14):1339-43. doi: 10.1016/j.cub.2012.05.023. Epub 2012 Jun 21.
3
The effect of genome length on ejection forces in bacteriophage lambda.
Virology. 2006 May 10;348(2):430-6. doi: 10.1016/j.virol.2006.01.003. Epub 2006 Feb 15.
4
Dynamics of DNA ejection from bacteriophage.
Biophys J. 2006 Jul 15;91(2):411-20. doi: 10.1529/biophysj.105.070532. Epub 2006 May 5.
5
DNA heats up: energetics of genome ejection from phage revealed by isothermal titration calorimetry.
J Mol Biol. 2010 Feb 5;395(5):1079-87. doi: 10.1016/j.jmb.2009.11.069. Epub 2009 Dec 4.
6
Ionic effects on viral DNA packaging and portal motor function in bacteriophage phi 29.
Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11245-50. doi: 10.1073/pnas.0701323104. Epub 2007 Jun 7.
7
Ion-dependent dynamics of DNA ejections for bacteriophage lambda.
Biophys J. 2010 Aug 9;99(4):1101-9. doi: 10.1016/j.bpj.2010.06.024.
8
Portal Stability Controls Dynamics of DNA Ejection from Phage.
J Phys Chem B. 2016 Jul 7;120(26):6421-9. doi: 10.1021/acs.jpcb.6b04172. Epub 2016 May 31.
9
Controlling the extent of viral genome release by a combination of osmotic stress and polyvalent cations.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Aug;92(2):022708. doi: 10.1103/PhysRevE.92.022708. Epub 2015 Aug 13.
10
Influence of internal capsid pressure on viral infection by phage lambda.
Biophys J. 2009 Sep 16;97(6):1525-9. doi: 10.1016/j.bpj.2009.07.007.

引用本文的文献

1
Theoretical Studies on Assembly, Physical Stability, and Dynamics of Viruses.
Subcell Biochem. 2024;105:693-741. doi: 10.1007/978-3-031-65187-8_19.
2
Temperature-dependent ejection evolution arising from active and passive effects in DNA viruses.
Biophys J. 2024 Oct 1;123(19):3317-3330. doi: 10.1016/j.bpj.2024.07.037. Epub 2024 Jul 31.
3
The structure and physical properties of a packaged bacteriophage particle.
Nature. 2024 Mar;627(8005):905-914. doi: 10.1038/s41586-024-07150-4. Epub 2024 Mar 6.
4
Role of DNA-DNA sliding friction and nonequilibrium dynamics in viral genome ejection and packaging.
Nucleic Acids Res. 2023 Aug 25;51(15):8060-8069. doi: 10.1093/nar/gkad582.
5
AT-specific DNA visualization revisits the directionality of bacteriophage λ DNA ejection.
Nucleic Acids Res. 2023 Jun 23;51(11):5634-5646. doi: 10.1093/nar/gkad340.
7
Imaging the Infection Cycle of T7 at the Single Virion Level.
Int J Mol Sci. 2022 Sep 24;23(19):11252. doi: 10.3390/ijms231911252.
8
Single-particle virology.
Biophys Rev. 2020 Oct;12(5):1141-1154. doi: 10.1007/s12551-020-00747-9. Epub 2020 Sep 3.
9
C22 podovirus infectivity is associated with intermediate stiffness.
Sci Rep. 2020 Jul 28;10(1):12604. doi: 10.1038/s41598-020-69409-w.
10
Additive manufacturing of laminar flow cells for single-molecule experiments.
Sci Rep. 2019 Nov 14;9(1):16784. doi: 10.1038/s41598-019-53151-z.

本文引用的文献

1
Ionic effects on viral DNA packaging and portal motor function in bacteriophage phi 29.
Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11245-50. doi: 10.1073/pnas.0701323104. Epub 2007 Jun 7.
2
Transduction in Escherichia Coli K-12.
Genetics. 1956 Jan;41(1):142-56. doi: 10.1093/genetics/41.1.142.
4
The effect of translocating cylindrical particles on the ionic current through a nanopore.
Biophys J. 2007 Feb 15;92(4):1164-77. doi: 10.1529/biophysj.106.089268. Epub 2006 Dec 1.
5
Resistive-pulse DNA detection with a conical nanopore sensor.
Langmuir. 2006 Dec 5;22(25):10837-43. doi: 10.1021/la061234k.
6
Biological consequences of tightly bent DNA: the other life of a macromolecular celebrity.
Biopolymers. 2007 Feb 5;85(2):115-30. doi: 10.1002/bip.20627.
7
DNA counterion current and saturation examined by a MEMS-based solid state nanopore sensor.
Biomed Microdevices. 2006 Sep;8(3):263-9. doi: 10.1007/s10544-006-9144-x.
8
Dynamics of DNA ejection from bacteriophage.
Biophys J. 2006 Jul 15;91(2):411-20. doi: 10.1529/biophysj.105.070532. Epub 2006 May 5.
9
Requirements for Bacillus subtilis bacteriophage phi29 DNA ejection.
Gene. 2006 Jun 7;374:19-25. doi: 10.1016/j.gene.2006.01.006. Epub 2006 Mar 6.
10
The effect of genome length on ejection forces in bacteriophage lambda.
Virology. 2006 May 10;348(2):430-6. doi: 10.1016/j.virol.2006.01.003. Epub 2006 Feb 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验