Suppr超能文献

离子对噬菌体phi 29中病毒DNA包装和门户马达功能的影响

Ionic effects on viral DNA packaging and portal motor function in bacteriophage phi 29.

作者信息

Fuller Derek N, Rickgauer John Peter, Jardine Paul J, Grimes Shelley, Anderson Dwight L, Smith Douglas E

机构信息

Department of Physics, University of California, San Diego, Mail Code 0379, 9500 Gilman Drive, La Jolla, CA 92093, USA.

出版信息

Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11245-50. doi: 10.1073/pnas.0701323104. Epub 2007 Jun 7.

Abstract

In many viruses, DNA is confined at such high density that its bending rigidity and electrostatic self-repulsion present a strong energy barrier in viral assembly. Therefore, a powerful molecular motor is needed to package the DNA into the viral capsid. Here, we investigate the role of electrostatic repulsion on single DNA packaging dynamics in bacteriophage phi 29 via optical tweezers measurements. We show that ionic screening strongly affects the packing forces, confirming the importance of electrostatic repulsion. Separately, we find that ions affect the motor function. We separate these effects through constant force measurements and velocity versus load measurements at both low and high capsid filling. Regarding motor function, we find that eliminating free Mg(2+) blocks initiation of packaging. In contrast, Na(+) is not required, but it increases the motor velocity by up to 50% at low load. Regarding internal resistance, we find that the internal force was lowest when Mg(2+) was the dominant ion or with the addition of 1 mM Co(3+). Forces resisting DNA confinement were up to approximately 80% higher with Na(+) as the dominant counterion, and only approximately 90% of the genome length could be packaged in this condition. The observed trend of the packing forces is in accord with that predicted by DNA charge-screening theory. However, the forces are up to six times higher than predicted by models that assume coaxial spooling of the DNA and interaction potentials derived from DNA condensation experiments. The forces are also severalfold higher than ejection forces measured with bacteriophage lambda.

摘要

在许多病毒中,DNA以如此高的密度存在,以至于其弯曲刚度和静电自排斥在病毒组装过程中构成了强大的能量障碍。因此,需要一种强大的分子马达将DNA包装到病毒衣壳中。在这里,我们通过光镊测量研究了静电排斥在噬菌体phi 29中单个DNA包装动力学中的作用。我们表明,离子屏蔽强烈影响包装力,证实了静电排斥的重要性。另外,我们发现离子会影响马达功能。我们通过在低衣壳填充率和高衣壳填充率下的恒力测量以及速度与负载测量来分离这些影响。关于马达功能,我们发现去除游离的Mg(2+)会阻止包装的启动。相比之下,Na(+)不是必需的,但在低负载下它会使马达速度提高多达50%。关于内部阻力,我们发现当Mg(2+)是主要离子或添加1 mM Co(3+)时,内力最低。以Na(+)作为主要抗衡离子时,抵抗DNA受限的力高出约80%,在这种情况下只能包装约90%的基因组长度。观察到的包装力趋势与DNA电荷屏蔽理论预测的一致。然而,这些力比假设DNA同轴缠绕和源自DNA凝聚实验的相互作用势的模型预测的高出多达六倍。这些力也比用噬菌体lambda测量的弹射力高出几倍。

相似文献

1
Ionic effects on viral DNA packaging and portal motor function in bacteriophage phi 29.
Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11245-50. doi: 10.1073/pnas.0701323104. Epub 2007 Jun 7.
2
Portal motor velocity and internal force resisting viral DNA packaging in bacteriophage phi29.
Biophys J. 2008 Jan 1;94(1):159-67. doi: 10.1529/biophysj.107.104612. Epub 2007 Sep 7.
3
Experimental comparison of forces resisting viral DNA packaging and driving DNA ejection.
Phys Rev E. 2017 May;95(5-1):052408. doi: 10.1103/PhysRevE.95.052408. Epub 2017 May 17.
5
Structural and thermodynamic principles of viral packaging.
Structure. 2007 Jan;15(1):21-7. doi: 10.1016/j.str.2006.11.013.
6
Nonequilibrium dynamics and ultraslow relaxation of confined DNA during viral packaging.
Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):8345-50. doi: 10.1073/pnas.1405109111. Epub 2014 May 27.
8
Stuffing a virus with DNA: dissecting viral genome packaging.
Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11125-6. doi: 10.1073/pnas.0704764104. Epub 2007 Jun 26.
9
Directional mechanical stability of Bacteriophage φ29 motor's 3WJ-pRNA: Extraordinary robustness along portal axis.
Sci Adv. 2017 May 26;3(5):e1601684. doi: 10.1126/sciadv.1601684. eCollection 2017 May.
10
DNA packaging and ejection forces in bacteriophage.
Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13671-4. doi: 10.1073/pnas.241486298. Epub 2001 Nov 13.

引用本文的文献

1
Optical Tweezers to Study Viruses.
Subcell Biochem. 2024;105:359-399. doi: 10.1007/978-3-031-65187-8_10.
3
DNA packaging by molecular motors: from bacteriophage to human chromosomes.
Nat Rev Genet. 2024 Nov;25(11):785-802. doi: 10.1038/s41576-024-00740-y. Epub 2024 Jun 17.
4
The structure and physical properties of a packaged bacteriophage particle.
Nature. 2024 Mar;627(8005):905-914. doi: 10.1038/s41586-024-07150-4. Epub 2024 Mar 6.
5
Impact of Ion-Mixing Entropy on Orientational Preferences of DNA Helices: FRET Measurements and Computer Simulations.
J Phys Chem B. 2023 Oct 19;127(41):8796-8808. doi: 10.1021/acs.jpcb.3c04354. Epub 2023 Oct 10.
6
Role of DNA-DNA sliding friction and nonequilibrium dynamics in viral genome ejection and packaging.
Nucleic Acids Res. 2023 Aug 25;51(15):8060-8069. doi: 10.1093/nar/gkad582.
7
Design of bacteriophage T4-based artificial viral vectors for human genome remodeling.
Nat Commun. 2023 May 30;14(1):2928. doi: 10.1038/s41467-023-38364-1.
8
Direct Measurement of Interhelical DNA Repulsion and Attraction by Quantitative Cross-Linking.
J Am Chem Soc. 2022 Feb 2;144(4):1718-1728. doi: 10.1021/jacs.1c11122. Epub 2022 Jan 24.
9
The PLB measurement for the connector in Phi29 bacteriophage reveals the function of its channel loop.
Biophys J. 2021 May 4;120(9):1650-1664. doi: 10.1016/j.bpj.2021.02.043. Epub 2021 Mar 5.
10
Virus Isoelectric Point Estimation: Theories and Methods.
Appl Environ Microbiol. 2021 Jan 15;87(3). doi: 10.1128/AEM.02319-20.

本文引用的文献

1
Structural and thermodynamic principles of viral packaging.
Structure. 2007 Jan;15(1):21-7. doi: 10.1016/j.str.2006.11.013.
2
DNA as a metrology standard for length and force measurements with optical tweezers.
Biophys J. 2006 Dec 1;91(11):4253-7. doi: 10.1529/biophysj.106.089524. Epub 2006 Sep 8.
3
Polymer packaging and ejection in viral capsids: shape matters.
Phys Rev Lett. 2006 May 26;96(20):208102. doi: 10.1103/PhysRevLett.96.208102.
4
Cryo-EM asymmetric reconstruction of bacteriophage P22 reveals organization of its DNA packaging and infecting machinery.
Structure. 2006 Jun;14(6):1073-82. doi: 10.1016/j.str.2006.05.007. Epub 2006 May 25.
5
The structure of an infectious P22 virion shows the signal for headful DNA packaging.
Science. 2006 Jun 23;312(5781):1791-5. doi: 10.1126/science.1127981. Epub 2006 May 18.
6
Langevin dynamics simulations of genome packing in bacteriophage.
Biophys J. 2006 Jul 1;91(1):25-41. doi: 10.1529/biophysj.105.073429. Epub 2006 Apr 14.
7
The effect of genome length on ejection forces in bacteriophage lambda.
Virology. 2006 May 10;348(2):430-6. doi: 10.1016/j.virol.2006.01.003. Epub 2006 Feb 15.
9
A general method for manipulating DNA sequences from any organism with optical tweezers.
Nucleic Acids Res. 2006 Feb 1;34(2):e15. doi: 10.1093/nar/gnj016.
10
Mechanism of force generation of a viral DNA packaging motor.
Cell. 2005 Sep 9;122(5):683-92. doi: 10.1016/j.cell.2005.06.024.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验