Suppr超能文献

天王星和海王星的极光发射。

Auroral emissions from Uranus and Neptune.

作者信息

Lamy L

机构信息

LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, 5 place Jules Janssen, 92195 Meudon, France.

LAM, Pythéas, Aix Marseille Université, CNRS, CNES, 38 Rue Frédéric Joliot Curie, 13013 Marseille, France.

出版信息

Philos Trans A Math Phys Eng Sci. 2020 Dec 25;378(2187):20190481. doi: 10.1098/rsta.2019.0481. Epub 2020 Nov 9.

Abstract

Uranus and Neptune possess highly tilted/offset magnetic fields whose interaction with the solar wind shapes unique twin asymmetric, highly dynamical, magnetospheres. These radiate complex auroral emissions, both reminiscent of those observed at the other planets and unique to the ice giants, which have been detected at radio and ultraviolet (UV) wavelengths to date. Our current knowledge of these radiations, which probe fundamental planetary properties (magnetic field, rotation period, magnetospheric processes, etc.), still mostly relies on Voyager 2 radio, UV and measurements, when the spacecraft flew by each planet in the 1980s. These pioneering observations were, however, limited in time and sampled specific solar wind/magnetosphere configurations, which significantly vary at various timescales down to a fraction of a planetary rotation. Since then, despite repeated Earth-based observations at similar and other wavelengths, only the Uranian UV aurorae have been re-observed at scarce occasions by the Hubble Space Telescope. These observations revealed auroral features radically different from those seen by Voyager 2, diagnosing yet another solar wind/magnetosphere configuration. Perspectives for the in-depth study of the Uranian and Neptunian auroral processes, with implications for exoplanets, include follow-up remote Earth-based observations and future orbital exploration of one or both ice giant planetary systems. This article is part of a discussion meeting issue 'Future exploration of ice giant systems'.

摘要

天王星和海王星拥有高度倾斜/偏移的磁场,其与太阳风的相互作用塑造了独特的、呈双对称且高度动态的磁层。这些磁层辐射出复杂的极光,既让人联想到在其他行星上观测到的极光,又具有冰巨星独有的特征,到目前为止,已在射电和紫外线(UV)波段探测到这些极光。我们目前对这些辐射的了解,这些辐射可探测基本的行星特性(磁场、自转周期、磁层过程等),仍然主要依赖于20世纪80年代旅行者2号飞越各行星时进行的射电、紫外线和 测量。然而,这些开创性的观测在时间上是有限的,且采样的是特定的太阳风/磁层配置,这些配置在各种时间尺度上都会发生显著变化,短至行星自转的一小部分时间。从那时起,尽管在类似和其他波长上进行了多次地面观测,但只有天王星的紫外线极光在哈勃太空望远镜的罕见观测中被重新观测到。这些观测揭示了与旅行者2号所看到的极光特征截然不同的极光特征,表明了另一种太阳风/磁层配置。深入研究天王星和海王星极光过程及其对外行星的影响的前景,包括后续的地面远程观测以及对一个或两个冰巨星行星系统的未来轨道探测。本文是“冰巨星系统的未来探索”讨论会议题的一部分。

相似文献

1
Auroral emissions from Uranus and Neptune.
Philos Trans A Math Phys Eng Sci. 2020 Dec 25;378(2187):20190481. doi: 10.1098/rsta.2019.0481. Epub 2020 Nov 9.
2
Ice giant magnetospheres.
Philos Trans A Math Phys Eng Sci. 2020 Dec 25;378(2187):20190480. doi: 10.1098/rsta.2019.0480. Epub 2020 Nov 9.
3
The upper atmospheres of Uranus and Neptune.
Philos Trans A Math Phys Eng Sci. 2020 Dec 25;378(2187):20190478. doi: 10.1098/rsta.2019.0478. Epub 2020 Nov 9.
4
Remote sensing of the magnetic moment of uranus: predictions for voyager.
Science. 1985 Mar 22;227(4693):1466-9. doi: 10.1126/science.227.4693.1466.
6
The underexplored frontier of ice giant dynamos.
Philos Trans A Math Phys Eng Sci. 2020 Dec 25;378(2187):20190479. doi: 10.1098/rsta.2019.0479. Epub 2020 Nov 9.
7
Atmospheric chemistry on Uranus and Neptune.
Philos Trans A Math Phys Eng Sci. 2020 Dec 25;378(2187):20190477. doi: 10.1098/rsta.2019.0477. Epub 2020 Nov 9.
8
Ice giant system exploration in the 2020s: an introduction.
Philos Trans A Math Phys Eng Sci. 2020 Dec 25;378(2187):20190473. doi: 10.1098/rsta.2019.0473. Epub 2020 Nov 9.
9
The interiors of Uranus and Neptune: current understanding and open questions.
Philos Trans A Math Phys Eng Sci. 2020 Dec 25;378(2187):20190474. doi: 10.1098/rsta.2019.0474. Epub 2020 Nov 9.
10
Magnetic fields at neptune.
Science. 1989 Dec 15;246(4936):1473-8. doi: 10.1126/science.246.4936.1473.

引用本文的文献

1
Discovery of and infrared aurorae at Neptune with JWST.
Nat Astron. 2025;9(5):666-671. doi: 10.1038/s41550-025-02507-9. Epub 2025 Mar 26.
3
Magnetic Structure and Propagation of Two Interacting CMEs From the Sun to Saturn.
J Geophys Res Space Phys. 2021 Nov;126(11):e2021JA029770. doi: 10.1029/2021JA029770. Epub 2021 Nov 3.
4
The upper atmospheres of Uranus and Neptune.
Philos Trans A Math Phys Eng Sci. 2020 Dec 25;378(2187):20190478. doi: 10.1098/rsta.2019.0478. Epub 2020 Nov 9.

本文引用的文献

1
Ice giant magnetospheres.
Philos Trans A Math Phys Eng Sci. 2020 Dec 25;378(2187):20190480. doi: 10.1098/rsta.2019.0480. Epub 2020 Nov 9.
2
The upper atmospheres of Uranus and Neptune.
Philos Trans A Math Phys Eng Sci. 2020 Dec 25;378(2187):20190478. doi: 10.1098/rsta.2019.0478. Epub 2020 Nov 9.
3
The interiors of Uranus and Neptune: current understanding and open questions.
Philos Trans A Math Phys Eng Sci. 2020 Dec 25;378(2187):20190474. doi: 10.1098/rsta.2019.0474. Epub 2020 Nov 9.
4
The underexplored frontier of ice giant dynamos.
Philos Trans A Math Phys Eng Sci. 2020 Dec 25;378(2187):20190479. doi: 10.1098/rsta.2019.0479. Epub 2020 Nov 9.
5
The H ionosphere of Uranus: decades-long cooling and local-time morphology.
Philos Trans A Math Phys Eng Sci. 2019 Sep 23;377(2154):20180408. doi: 10.1098/rsta.2018.0408. Epub 2019 Aug 5.
6
Voyager 2 radio observations of uranus.
Science. 1986 Jul 4;233(4759):102-6. doi: 10.1126/science.233.4759.102.
7
The magnetosphere of uranus: hot plasma and radiation environment.
Science. 1986 Jul 4;233(4759):97-102. doi: 10.1126/science.233.4759.97.
8
Magnetic fields at uranus.
Science. 1986 Jul 4;233(4759):85-9. doi: 10.1126/science.233.4759.85.
9
Ultraviolet spectrometer observations of uranus.
Science. 1986 Jul 4;233(4759):74-9. doi: 10.1126/science.233.4759.74.
10
Voyager planetary radio astronomy at neptune.
Science. 1989 Dec 15;246(4936):1498-501. doi: 10.1126/science.246.4936.1498.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验