Kronik Natalie, Kogan Yuri, Vainstein Vladimir, Agur Zvia
Institute for Medical BioMathematics (IMBM), 10 Hate'ena St., PO Box 282, Bene Ataroth 60991, Israel.
Cancer Immunol Immunother. 2008 Mar;57(3):425-39. doi: 10.1007/s00262-007-0387-z. Epub 2007 Sep 7.
Glioblastoma (GBM), a highly aggressive (WHO grade IV) primary brain tumor, is refractory to traditional treatments, such as surgery, radiation or chemotherapy. This study aims at aiding in the design of more efficacious GBM therapies. We constructed a mathematical model for glioma and the immune system interactions, that may ensue upon direct intra-tumoral administration of ex vivo activated alloreactive cytotoxic-T-lymphocytes (aCTL). Our model encompasses considerations of the interactive dynamics of aCTL, tumor cells, major histocompatibility complex (MHC) class I and MHC class II molecules, as well as cytokines, such as TGF-beta and IFN-gamma, which dampen or increase the pro-inflammatory environment, respectively. Computer simulations were used for model verification and for retrieving putative treatment scenarios. The mathematical model successfully retrieved clinical trial results of efficacious aCTL immunotherapy for recurrent anaplastic oligodendroglioma and anaplastic astrocytoma (WHO grade III). It predicted that cellular adoptive immunotherapy failed in GBM because the administered dose was 20-fold lower than required for therapeutic efficacy. Model analysis suggests that GBM may be eradicated by new dose-intensive strategies, e.g., 3 x 10(8) aCTL every 4 days for small tumor burden, or 2 x 10(9) aCTL, infused every 5 days for larger tumor burden. Further analysis pinpoints crucial bio-markers relating to tumor growth rate, tumor size, and tumor sensitivity to the immune system, whose estimation enables regimen personalization. We propose that adoptive cellular immunotherapy was prematurely abandoned. It may prove efficacious for GBM, if dose intensity is augmented, as prescribed by the mathematical model. Re-initiation of clinical trials, using calculated individualized regimens for grade III-IV malignant glioma, is suggested.
胶质母细胞瘤(GBM)是一种极具侵袭性的(世界卫生组织IV级)原发性脑肿瘤,对传统治疗方法,如手术、放疗或化疗具有耐药性。本研究旨在辅助设计更有效的GBM治疗方案。我们构建了一个关于胶质瘤与免疫系统相互作用的数学模型,该相互作用可能在体外激活的同种异体反应性细胞毒性T淋巴细胞(aCTL)直接瘤内给药后发生。我们的模型考虑了aCTL、肿瘤细胞、主要组织相容性复合体(MHC)I类和MHC II类分子以及细胞因子(如分别抑制或增强促炎环境的转化生长因子-β和干扰素-γ)的相互作用动力学。计算机模拟用于模型验证和检索假定的治疗方案。该数学模型成功重现了复发性间变性少突胶质细胞瘤和间变性星形细胞瘤(世界卫生组织III级)有效aCTL免疫治疗的临床试验结果。它预测细胞过继性免疫治疗在GBM中失败是因为给药剂量比治疗效果所需剂量低20倍。模型分析表明,GBM可能通过新的剂量密集策略根除,例如,对于小肿瘤负荷,每4天注射3×10⁸个aCTL,对于大肿瘤负荷,每5天注入2×10⁹个aCTL。进一步分析确定了与肿瘤生长速率、肿瘤大小和肿瘤对免疫系统敏感性相关的关键生物标志物,对其进行评估可实现治疗方案的个性化。我们认为过继性细胞免疫治疗被过早放弃了。如果按照数学模型规定增加剂量强度,它可能对GBM有效。建议重新启动针对III-IV级恶性胶质瘤的临床试验,使用计算出的个体化治疗方案。