Suppr超能文献

通过全局错误发现率的区域控制增强神经成像中的信号检测。

Enhanced signal detection in neuroimaging by means of regional control of the global false discovery rate.

作者信息

Langers Dave R M, Jansen Jacobus F A, Backes Walter H

机构信息

Department of Otorhinolaryngology, University Medical Center Groningen, 9700 RB, Groningen, The Netherlands.

出版信息

Neuroimage. 2007 Oct 15;38(1):43-56. doi: 10.1016/j.neuroimage.2007.07.031. Epub 2007 Aug 8.

Abstract

In the context of neuroimaging experiments, it is essential to account for the multiple comparisons problem when thresholding statistical mappings. Various methods are in use to deal with this issue, but they differ in their signal detection power for small- and large-scale effects. In this paper, we comprehensively describe a new method that is based on control of the false discovery rate (FDR). Our method increases sensitivity by exploiting the spatially clustered nature of neuroimaging effects. This is achieved by using a sliding window technique, in which FDR-control is first applied at a regional level. Thus, a new statistical map that is related to the regionally achieved FDR is derived from the available voxelwise P-values. On the basis of receiver operating characteristic (ROC) curves, thresholding based on this map is demonstrated to have better discriminatory power than conventional thresholding based on P-values. Secondly, it is shown that the resulting maps can be thresholded at a level that results in control of the global FDR. By means of statistical arguments and numerical simulations under widely varying conditions, our method is validated, characterized, and compared to some other common voxel-based methods (uncorrected thresholding, Bonferroni correction, and conventional FDR-control). It is found that our method shows considerably higher sensitivity as compared to conventional FDR-control, while still controlling the achieved FDR at the same level or better. Finally, our method is applied to two diverse neuroimaging experiments to assess its practical merits, resulting in substantial improvements as compared to the other methods.

摘要

在神经影像学实验的背景下,在对统计映射进行阈值处理时,考虑多重比较问题至关重要。目前有多种方法用于处理这个问题,但它们在检测小规模和大规模效应的信号检测能力上有所不同。在本文中,我们全面描述了一种基于错误发现率(FDR)控制的新方法。我们的方法通过利用神经影像学效应的空间聚类性质来提高灵敏度。这是通过使用滑动窗口技术实现的,其中首先在区域层面应用FDR控制。因此,从可用的体素级P值中导出与区域实现的FDR相关的新统计映射。基于受试者工作特征(ROC)曲线,证明基于此映射的阈值处理比基于P值的传统阈值处理具有更好的辨别能力。其次,结果表明,所得映射可以在导致全局FDR得到控制的水平上进行阈值处理。通过在广泛变化的条件下进行统计论证和数值模拟,我们的方法得到了验证、表征,并与其他一些基于体素的常用方法(未校正阈值处理、Bonferroni校正和传统FDR控制)进行了比较。结果发现,与传统的FDR控制相比,我们的方法显示出更高的灵敏度,同时仍能在相同水平或更好地控制实现的FDR。最后,我们的方法应用于两个不同的神经影像学实验以评估其实用价值,与其他方法相比有显著改进。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验