Suppr超能文献

神经元-微电极阵列界面的分子设计与表征

Molecular design and characterization of the neuron-microelectrode array interface.

作者信息

Greve Frauke, Frerker Susanne, Bittermann Anne Greet, Burkhardt Claus, Hierlemann Andreas, Hall Heike

机构信息

Physics Electronics Laboratory, Department of Physics, ETH Zurich, Switzerland.

出版信息

Biomaterials. 2007 Dec;28(35):5246-58. doi: 10.1016/j.biomaterials.2007.08.010. Epub 2007 Sep 10.

Abstract

Electrophysiological activities of neuronal networks can be recorded on microelectrode arrays (MEAs). This technique requires tight coupling between MEA-surfaces and cells. Therefore, this study investigated the interface between DRG neurons and MEA-surface materials after adsorption of neurite promoting proteins: laminin-111, fibronectin, L1Ig6 and poly-l-lysine. Moreover, substrate-induced effects on neuronal networks with time were analyzed. The thickness of adsorbed protein layers was found between approximately 1 nm for poly-l-lysine and approximately 80 nm for laminin-111 on platinum, gold and silicon nitride. The neuron-to-substrate interface was characterized by Scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and SEM after in situ focused-ion-beam milling demonstrating that the ventral cell membrane adhered inhomogeneously to laminin-111 or L1Ig6 surfaces. Tight areas of 20-30 nm and distant areas <1 microm alternated and even tightest areas did not correlate with the physical thickness of the protein layers. This study illustrates the difficulties to predict cell-to-material interfaces that contribute substantially to the success of in vitro or in vivo systems. Moreover, focused ion beam (FIB)/SEM is explored as a new technique to analyze such interfaces.

摘要

神经元网络的电生理活动可以在微电极阵列(MEA)上进行记录。该技术要求MEA表面与细胞紧密耦合。因此,本研究调查了在吸附神经突促进蛋白(层粘连蛋白-111、纤连蛋白、L1Ig6和聚-L-赖氨酸)后背根神经节(DRG)神经元与MEA表面材料之间的界面。此外,还分析了底物随时间对神经元网络的影响。在铂、金和氮化硅上,聚-L-赖氨酸吸附蛋白层的厚度约为1nm,层粘连蛋白-111吸附蛋白层的厚度约为80nm。通过扫描电子显微镜(SEM)和透射电子显微镜(TEM)对神经元与底物的界面进行了表征,原位聚焦离子束铣削后的SEM表明腹侧细胞膜与层粘连蛋白-111或L1Ig6表面的粘附不均匀。20-30nm的紧密区域和小于1微米的间隔区域交替出现,即使是最紧密的区域也与蛋白层的物理厚度无关。本研究说明了预测细胞与材料界面的困难,而这种界面对于体外或体内系统的成功至关重要。此外,聚焦离子束(FIB)/SEM被探索为一种分析此类界面的新技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验