Weber Wilfried, Bacchus William, Daoud-El Baba Marie, Fussenegger Martin
Institute for Chemical and Bioengineering, ETH Zurich, Wolfgang-Pauli-Strasse 10, HCI F115, CH-8093 Zurich, Switzerland.
Nucleic Acids Res. 2007;35(17):e116. doi: 10.1093/nar/gkm466. Epub 2007 Sep 7.
Although adjustable transgene expression systems are considered essential for future therapeutic and biopharmaceutical manufacturing applications, the currently available transcription control modalities all require side-effect-prone inducers such as immunosupressants, hormones and antibiotics for fine-tuning. We have designed a novel mammalian transcription-control system, which is reversibly fine-tuned by non-toxic vitamin H (also referred to as biotin). Ligation of vitamin H, by engineered Escherichia coli biotin ligase (BirA), to a synthetic biotinylation signal fused to the tetracycline-dependent transactivator (tTA), enables heterodimerization of tTA to a streptavidin-linked transrepressor domain (KRAB), thereby abolishing tTA-mediated transactivation of specific target promoters. As heterodimerization of tTA to KRAB is ultimately conditional upon the presence of vitamin H, the system is vitamin H responsive. Transgenic Chinese hamster ovary cells, engineered for vitamin H-responsive gene expression, showed high-level, adjustable and reversible production of a human model glycoprotein in bench-scale culture systems, bioreactor-based biopharmaceutical manufacturing scenarios, and after implantation into mice. The vitamin H-responsive expression systems showed unique band pass filter-like regulation features characterized by high-level expression at low (0-2 nM biotin), maximum repression at intermediate (100-1000 nM biotin), and high-level expression at increased (>100 000 nM biotin) biotin concentrations. Sequential ON-to-OFF-to-ON, ON-to-OFF and OFF-to-ON expression profiles with graded expression transitions can all be achieved by simply increasing the level of a single inducer molecule without exchanging the culture medium. These novel expression characteristics mediated by an FDA-licensed inducer may foster advances in therapeutic cell engineering and manufacturing of difficult-to-produce protein therapeutics.
尽管可调节转基因表达系统被认为对未来的治疗和生物制药生产应用至关重要,但目前可用的转录控制方式都需要使用免疫抑制剂、激素和抗生素等容易产生副作用的诱导剂来进行微调。我们设计了一种新型的哺乳动物转录控制系统,该系统可通过无毒的维生素H(也称为生物素)进行可逆微调。通过工程化的大肠杆菌生物素连接酶(BirA)将维生素H连接到与四环素依赖性反式激活因子(tTA)融合的合成生物素化信号上,可使tTA与链霉亲和素连接的反式阻遏结构域(KRAB)异源二聚化,从而消除tTA介导的特定靶启动子的反式激活。由于tTA与KRAB的异源二聚化最终取决于维生素H的存在,因此该系统对维生素H有反应。经工程改造以实现对维生素H反应性基因表达的转基因中国仓鼠卵巢细胞,在实验室规模的培养系统、基于生物反应器的生物制药生产场景以及植入小鼠后,都显示出高水平、可调节且可逆的人源模型糖蛋白生产。维生素H反应性表达系统表现出独特的带通滤波器样调节特征,其特点是在低生物素浓度(0 - 2 nM生物素)下高水平表达,在中等生物素浓度(100 - 1000 nM生物素)下最大程度抑制,在生物素浓度增加(>100 000 nM生物素)时高水平表达。通过简单地增加单一诱导剂分子的水平而不更换培养基,就可以实现具有分级表达转变的顺序开-关-开、开-关和关-开表达谱。由美国食品药品监督管理局(FDA)批准的诱导剂介导的这些新型表达特征可能会促进治疗性细胞工程以及难生产蛋白质治疗药物制造方面的进展。