Weber Wilfried, Stelling Jörg, Rimann Markus, Keller Bettina, Daoud-El Baba Marie, Weber Cornelia C, Aubel Dominique, Fussenegger Martin
Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology, HCI F115, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland.
Proc Natl Acad Sci U S A. 2007 Feb 20;104(8):2643-8. doi: 10.1073/pnas.0606398104. Epub 2007 Feb 12.
Time-delay circuitries in which a transcription factor processes independent input parameters can modulate NF-kappaB activation, manage quorum-sensing cross-talk, and control the circadian clock. We have constructed a synthetic mammalian gene network that processes four different input signals to control either immediate or time-delayed transcription of specific target genes. BirA-mediated ligation of biotin to a biotinylation signal-containing VP16 transactivation domain triggers heterodimerization of chimeric VP16 to a streptavidin-linked tetracycline repressor (TetR). At increasing biotin concentrations up to 20 nM, TetR-specific promoters are gradually activated (off to on, input signal 1), are maximally induced at concentrations between 20 nM and 10 microM, and are adjustably shut off at biotin levels exceeding 10 microM (on to off, input signal 2). These specific expression characteristics with a discrete biotin concentration window emulate a biotin-triggered bandpass filter. Removal of biotin from the culture environment (input signal 3) results in time-delayed transgene expression until the intracellular biotinylated VP16 pool is degraded. Because the TetR component of the chimeric transactivator retains its tetracycline responsiveness, addition of this antibiotic (input signal 4) overrides biotin control and immediately shuts off target gene expression. Biotin-responsive immediate, bandpass filter, and time-delay transcription characteristics were predicted by a computational model and have been validated in standard cultivation settings or biopharmaceutical manufacturing scenarios using trangenic CHO-K1 cell derivatives and have been confirmed in mice. Synthetic gene circuitries provide insight into structure-function correlations of native signaling networks and foster advances in gene therapy and biopharmaceutical manufacturing.
转录因子处理独立输入参数的延时电路可调节核因子-κB的激活、管理群体感应串扰并控制生物钟。我们构建了一个合成哺乳动物基因网络,该网络处理四种不同的输入信号,以控制特定靶基因的即时或延时转录。BirA介导的生物素与含生物素化信号的VP16反式激活结构域的连接触发嵌合VP16与链霉亲和素连接的四环素阻遏物(TetR)的异源二聚化。在生物素浓度增加至20 nM的过程中,TetR特异性启动子逐渐被激活(从关闭到开启,输入信号1),在20 nM至10 μM的浓度之间被最大程度诱导,并且在生物素水平超过10 μM时可调节地关闭(从开启到关闭,输入信号2)。这些具有离散生物素浓度窗口的特定表达特征模拟了生物素触发的带通滤波器。从培养环境中去除生物素(输入信号3)会导致转基因表达出现延时,直到细胞内生物素化的VP16库被降解。由于嵌合反式激活因子的TetR成分保留其四环素反应性,添加这种抗生素(输入信号4)会超越生物素控制并立即关闭靶基因表达。生物素响应的即时、带通滤波器和延时转录特征通过计算模型进行了预测,并已在使用转基因CHO-K1细胞衍生物的标准培养环境或生物制药生产场景中得到验证,且在小鼠中得到了证实。合成基因电路为天然信号网络的结构-功能相关性提供了见解,并促进了基因治疗和生物制药生产的进展。