Vosegaard Thomas, Kamihira-Ishijima Miya, Watts Anthony, Nielsen Niels Chr
Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, University of Aarhus, Aarhus, Denmark.
Biophys J. 2008 Jan 1;94(1):241-50. doi: 10.1529/biophysj.107.116004. Epub 2007 Sep 7.
Oriented solid-state NMR in combination with multiple-residue-specific (15)N labeling and extensive numerical spectral analysis is proposed to determine helix conformations of large membrane proteins in native membranes. The method is demonstrated on uniaxially oriented samples of (15)N-methionine, -valine, and -glycine-labeled bacteriorhopsin in native purple membranes. Experimental two-dimensional (1)H-(15)N dipole-dipole coupling versus (15)N chemical shift spectra for all samples are analyzed numerically to establish combined constraints on the orientation of the seven transmembrane helices relative to the membrane bilayer normal. Since the method does not depend on specific resonance assignments and proves robust toward nonidealities in the sample alignment, it may be generally feasible for the study of conformational arrangement and function-induced conformation changes of large integral membrane proteins.
本文提出将定向固态核磁共振与多残基特异性(15)N标记及广泛的数值光谱分析相结合,以确定天然膜中大型膜蛋白的螺旋构象。该方法在天然紫色膜中(15)N-甲硫氨酸、-缬氨酸和-甘氨酸标记的细菌视紫红质的单轴定向样品上得到了验证。对所有样品的二维(1)H-(15)N偶极-偶极耦合与(15)N化学位移光谱进行了数值分析,以建立七个跨膜螺旋相对于膜双层法线方向的组合约束。由于该方法不依赖于特定的共振归属,并且对样品排列中的非理想情况具有鲁棒性,因此对于研究大型整合膜蛋白的构象排列和功能诱导的构象变化可能普遍可行。