Suppr超能文献

物理化学性质的统计分析及蛋白质-蛋白质相互作用界面的预测

Statistical analysis of physical-chemical properties and prediction of protein-protein interfaces.

作者信息

Negi Surendra S, Braun Werner

机构信息

Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-0857, USA.

出版信息

J Mol Model. 2007 Nov;13(11):1157-67. doi: 10.1007/s00894-007-0237-0. Epub 2007 Sep 9.

Abstract

We have developed a fully automated method, InterProSurf, to predict interacting amino acid residues on protein surfaces of monomeric 3D structures. Potential interacting residues are predicted based on solvent accessible surface areas, a new scale for interface propensities, and a cluster algorithm to locate surface exposed areas with high interface propensities. Previous studies have shown the importance of hydrophobic residues and specific charge distribution as characteristics for interfaces. Here we show differences in interface and surface regions of all physical chemical properties of residues as represented by five quantitative descriptors. In the current study a set of 72 protein complexes with known 3D structures were analyzed to obtain interface propensities of residues, and to find differences in the distribution of five quantitative descriptors for amino acid residues. We also investigated spatial pair correlations of solvent accessible residues in interface and surface areas, and compared log-odds ratios for interface and surface areas. A new scoring method to predict potential functional sites on the protein surface was developed and tested for a new dataset of 21 protein complexes, which were not included in the original training dataset. Empirically we found that the algorithm achieves a good balance in the accuracy of precision and sensitivity by selecting the top eight highest scoring clusters as interface regions. The performance of the method is illustrated for a dimeric ATPase of the hyperthermophile, Methanococcus jannaschii, and the capsid protein of Human Hepatitis B virus. An automated version of the method can be accessed from our web server at http://curie.utmb.edu/prosurf.html.

摘要

我们开发了一种全自动方法InterProSurf,用于预测单体三维结构蛋白质表面上相互作用的氨基酸残基。基于溶剂可及表面积、一种新的界面倾向量表以及一种用于定位具有高界面倾向的表面暴露区域的聚类算法来预测潜在的相互作用残基。先前的研究表明,疏水残基和特定电荷分布作为界面特征的重要性。在这里,我们展示了由五个定量描述符表示的残基所有物理化学性质在界面和表面区域的差异。在当前研究中,分析了一组72个具有已知三维结构的蛋白质复合物,以获得残基的界面倾向,并找出氨基酸残基五个定量描述符分布的差异。我们还研究了界面和表面区域中溶剂可及残基的空间对相关性,并比较了界面和表面区域的对数优势比。开发了一种预测蛋白质表面潜在功能位点的新评分方法,并在一个不包含在原始训练数据集中的21个蛋白质复合物的新数据集中进行了测试。根据经验,我们发现该算法通过选择得分最高的前八个聚类作为界面区域,在精度和灵敏度的准确性方面实现了良好的平衡。以嗜热栖热菌的二聚体ATP酶和人乙型肝炎病毒的衣壳蛋白为例说明了该方法的性能。该方法的自动化版本可从我们的网页服务器http://curie.utmb.edu/prosurf.html获取。

相似文献

1
Statistical analysis of physical-chemical properties and prediction of protein-protein interfaces.
J Mol Model. 2007 Nov;13(11):1157-67. doi: 10.1007/s00894-007-0237-0. Epub 2007 Sep 9.
2
InterProSurf: a web server for predicting interacting sites on protein surfaces.
Bioinformatics. 2007 Dec 15;23(24):3397-9. doi: 10.1093/bioinformatics/btm474. Epub 2007 Oct 12.
3
Crystal structure of a DEAD box protein from the hyperthermophile Methanococcus jannaschii.
Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1465-70. doi: 10.1073/pnas.98.4.1465.
6
Intrinsic disorder in the Protein Data Bank.
J Biomol Struct Dyn. 2007 Feb;24(4):325-42. doi: 10.1080/07391102.2007.10507123.
7
Soluble P-type ATPase from an archaeon, Methanococcus jannaschii.
FEBS Lett. 2000 Apr 7;471(1):99-102. doi: 10.1016/s0014-5793(00)01374-0.
8
HotRegion: a database of predicted hot spot clusters.
Nucleic Acids Res. 2012 Jan;40(Database issue):D829-33. doi: 10.1093/nar/gkr929. Epub 2011 Nov 12.
9
Accurate prediction of RNA-binding protein residues with two discriminative structural descriptors.
BMC Bioinformatics. 2016 Jun 7;17(1):231. doi: 10.1186/s12859-016-1110-x.
10
Oligomeric protein structure networks: insights into protein-protein interactions.
BMC Bioinformatics. 2005 Dec 10;6:296. doi: 10.1186/1471-2105-6-296.

引用本文的文献

1
PRESCOTT: a population aware, epistatic, and structural model accurately predicts missense effects.
Genome Biol. 2025 May 6;26(1):113. doi: 10.1186/s13059-025-03581-y.
2
Integrative modeling of guanylate binding protein dimers.
Protein Sci. 2023 Dec;32(12):e4818. doi: 10.1002/pro.4818.
5
Decrypting protein surfaces by combining evolution, geometry, and molecular docking.
Proteins. 2019 Nov;87(11):952-965. doi: 10.1002/prot.25757. Epub 2019 Jun 26.
6
Protein-protein interaction specificity is captured by contact preferences and interface composition.
Bioinformatics. 2018 Feb 1;34(3):459-468. doi: 10.1093/bioinformatics/btx584.
7
Cross-React: a new structural bioinformatics method for predicting allergen cross-reactivity.
Bioinformatics. 2017 Apr 1;33(7):1014-1020. doi: 10.1093/bioinformatics/btw767.
8
Local Geometry and Evolutionary Conservation of Protein Surfaces Reveal the Multiple Recognition Patches in Protein-Protein Interactions.
PLoS Comput Biol. 2015 Dec 21;11(12):e1004580. doi: 10.1371/journal.pcbi.1004580. eCollection 2015 Dec.
10
Progress and challenges in predicting protein interfaces.
Brief Bioinform. 2016 Jan;17(1):117-31. doi: 10.1093/bib/bbv027. Epub 2015 May 13.

本文引用的文献

1
SHARP2: protein-protein interaction predictions using patch analysis.
Bioinformatics. 2006 Jul 15;22(14):1794-5. doi: 10.1093/bioinformatics/btl171. Epub 2006 May 3.
2
Evolutionary trace report_maker: a new type of service for comparative analysis of proteins.
Bioinformatics. 2006 Jul 1;22(13):1656-7. doi: 10.1093/bioinformatics/btl157. Epub 2006 Apr 27.
3
Determining functionally important amino acid residues of the E1 protein of Venezuelan equine encephalitis virus.
J Mol Model. 2006 Sep;12(6):921-9. doi: 10.1007/s00894-006-0101-7. Epub 2006 Apr 11.
4
PRISM: protein interactions by structural matching.
Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W331-6. doi: 10.1093/nar/gki585.
5
ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures.
Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W299-302. doi: 10.1093/nar/gki370.
6
Statistical analysis and prediction of protein-protein interfaces.
Proteins. 2005 Aug 15;60(3):353-66. doi: 10.1002/prot.20433.
7
Improved prediction of protein-protein binding sites using a support vector machines approach.
Bioinformatics. 2005 Apr 15;21(8):1487-94. doi: 10.1093/bioinformatics/bti242. Epub 2004 Dec 21.
8
A dissection of specific and non-specific protein-protein interfaces.
J Mol Biol. 2004 Feb 27;336(4):943-55. doi: 10.1016/j.jmb.2003.12.073.
9
ProMate: a structure based prediction program to identify the location of protein-protein binding sites.
J Mol Biol. 2004 Apr 16;338(1):181-99. doi: 10.1016/j.jmb.2004.02.040.
10
Prediction of protein-protein interaction sites using support vector machines.
Protein Eng Des Sel. 2004 Feb;17(2):165-73. doi: 10.1093/protein/gzh020. Epub 2004 Jan 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验