Suppr超能文献

基于统计的连续生理测量警报。

Statistics-based alarms from sequential physiological measurements.

作者信息

Harrison M J, Connor C W

机构信息

University Department of Anaesthesiology, Faculty of Medical and Health Sciences, University of Auckland, NZ.

出版信息

Anaesthesia. 2007 Oct;62(10):1015-23. doi: 10.1111/j.1365-2044.2007.05187.x.

Abstract

We have developed an anaesthesia alarm system that responds in a more clinically appropriate manner than current threshold alarms. A decrease in systolic arterial pressure of 10 mmHg from a previous value of 70 mmHg has a greater clinical significance than a decrease of 10 mmHg from 150 mmHg. However, it has been difficult to envisage a simple algorithm for the detection of these contextually adverse changes in physiological variables. We have processed systolic arterial pressure data to create a mathematically straightforward statistical tool for sampling intervals up to 5 min. Both the blood pressure and the change in blood pressure over a known time interval are plotted on x and y axes with the units in standard deviations. Some 10 824 measurements were obtained at 10-s intervals in 17 patients. The mean (SD) systolic arterial pressure for all observations in our patients was 118 (17.0) mmHg. The mean (SD) change in systolic arterial pressure over 5 min was - 0.35 (15.2) mmHg. Combining the value for the standard deviation of systolic arterial pressure and the standard deviation of the change in systolic arterial pressure using Pythagoras's theorem creates a value in standard deviations for this particular state. Instead of alarms being set in mmHg, they would be set in standard deviations. This technique was developed further using Principal Component Analysis to isolate uncommon deviations from normal, clinically unimportant physiological variations. These clinically unimportant changes occur in a predictable fashion only if the sampling interval is 90 s or less. This new alarm system is asymmetric - a small decrease in systolic arterial pressure from 90 mmHg may, appropriately, set off an alarm but it would require a much larger increase in systolic arterial pressure to do so.

摘要

我们开发了一种麻醉警报系统,其响应方式比当前的阈值警报在临床上更合适。收缩压从之前的70 mmHg下降10 mmHg比从150 mmHg下降10 mmHg具有更大的临床意义。然而,很难设想一种简单的算法来检测生理变量中这些与背景相关的不利变化。我们对收缩压数据进行了处理,以创建一种数学上简单的统计工具,用于长达5分钟的采样间隔。血压以及已知时间间隔内血压的变化都以标准差为单位绘制在x轴和y轴上。在17名患者中,以10秒的间隔获得了约10824次测量。我们患者所有观察值的平均(标准差)收缩压为118(17.0)mmHg。5分钟内收缩压的平均(标准差)变化为 -0.35(15.2)mmHg。使用毕达哥拉斯定理将收缩压的标准差和收缩压变化的标准差相结合,得出该特定状态下以标准差为单位的值。警报不是以mmHg为单位设置,而是以标准差为单位设置。使用主成分分析进一步开发了该技术,以从正常、临床上不重要的生理变化中分离出不常见的偏差。只有当采样间隔为90秒或更短时,这些临床上不重要的变化才会以可预测的方式出现。这种新的警报系统是不对称的——收缩压从90 mmHg小幅下降可能会适当地触发警报,但收缩压需要大幅升高才会触发警报。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验